

PROGRAM

: NATIONAL DIPLOMA

ENGINEERING: CIVIL

SUBJECT

: STRUCTURAL STEEL AND

TIMBER DESIGN III

CODE

: TSS31-1

DATE

: SUMMER SSA EXAMINATION 2017

10 JANUARY 2017

DURATION

: (SESSION 2) 11:30 – 15:30

WEIGHT

: 40:60

TOTAL MARKS

: 110

EXAMINER

: MR C BRUWER

MODERATOR : MR B. RAATH

NUMBER OF PAGES : 4 PAGES

REQUIREMENTS

: 2 EXAMINATION SCRIPTS PER STUDENT

INSTRUCTIONS

: THIS IS A PARTIAL OPEN BOOK EXAMINATION.

THE FOLLOWING IS ALLOWED:

• 2 x A4 PAGES WRITTEN ON BOTH SIDES WITH

STUDENT'S OWN NOTES

• SANS 10162-1

• SANS 10160-1

STEEL TABLES WITH 2 PAGES OF ADDITIONAL

SECTIONAL PROPERTIES

PROGRAMMABLE POCKET CALCULATOR

QUESTION 1

The figure below shows a crane beam (457x191x67 I section, Grade 350W) connected to columns on both ends by means of cleats. The supports can be considered as simply supported. A nominal live load of 110 kN move along the entire beam by means of a trolley. Ignore the own weight of the beam.

Check if the beam is adequate to support the imposed ultimate loads by considering the following:

• 1.1 Bending

1.

		0		
		0	1.1.1 Determine the maximum ultimate bending moment	(2)
		0	1.1.2 Determine the class of beam	(6)
		0	1.1.3 Determine the critical elastic moment	(5)
		0	1.1.4 Determine the moment resistance	(5)
		0	1.1.5 Compare the moment resistance to the ultimate bending moment	(1)
•	1.2 Shear		-	(1)
		0	1.2.1 Determine the maximum shear force	(1)
		0	1.2.2 Determine the shear resistance of the beam	(5)
		_		(3)
		0	1.2.3 Compare the shear resistance to the ultimate shear force	(1)
				[26]

QUESTION 2

The figure below show a truss with pin-jointed members subjected to the following point loads:

- Nominal point load at A: Permanent (Dead) = 25 kN Imposed (Live) = 25 kN
- Nominal point load at B: Permanent (Dead) = 35 kN Imposed (Live) = 20 kN
- Nominal point load at C: Permanent (Dead) = 45 kNImposed (Live) = 55 kN
- Neglect the own weight of the structure.

Answer the following questions whilst determining if members AD and AE can resist the ultimate forces

tima	ite forc	es.				
•	2.1 D	etermine the ultimate forces in elements AD and AE	(7)			
•	2.2 Check if the compression member (bolted on the one end and welded on the other					
	adequate to resist the generated force by investigating the following:					
	0	2.2.1 Slenderness limits	(5)			
	0	2.2.2 Local buckling	(3)			
	0	2.2.3 Member buckling due to torsional-flexural buckling	(9)			
	0		(2)			
	0	2.2.5 Compare the minimum compression resistance force to the ultimate	(2)			
		compression force and comment.	(1)			
•	2.3 Cl	neck if the tension member (bolted on the one end and welded on the other)				
	is ade	quate to resist the generated force by investigating the following:				
	0	2.3.1 Slenderness limit	(2)			
	0	2.3.2 Yielding failure	(1)			
	Bo	olted side of the element	(1)			
	0	2.3.3 Bolt hole layout is given below, check if it meets the minimum				
		requirements	(6)			
	0	2.3.4 Bolt shear, also check for reduction of long lap splices	(5)			
	0	2.3.5 Bearing resistance of the member	(3)			
	0	2.3.6 Fracture failure	(3)			
	0	2.3.7 Tension fracture and shear fracture	(4)			
	0	2.3.8 Tension fracture and shear yielding	(4)			
	W	elded side of the element				
	0	2.3.9 Weld shear failure	(2)			
	0	2.3.10 Fracture failure	(4)			
	Co	ompare minimum tensile resistance against ultimate tensile force.	(')			
	0	2.3.11 Determine and name the minimum tensile resistance force and				
		compare it to the ultimate tensile force and comment.	(2)			
e th	e follov	ving information:	(-)			
•	All me	embers are 80x80x8 Equal Angle, sawn to length, grade 350W steel.				
	$r_0 = 43$.3 mm, $C_w = 11.3 \times 10^6 \text{ mm}^6$ and $\Omega = 630.3 \times 10^{-3}$				

Use

- $r_0 = 43.3 \text{ mm}$, $C_w = 11.3 \times 10^6 \text{ mm}^6 \text{ and } \Omega = 630.3 \times 10^{-3}$
- All bolts are 16mm fully threaded Class 8.8 bolts. One line of 5 bolts. End distance is 30mm, pitch is 55mm and edge distance is 25mm.
- All holes are drilled.
- Transverse weld (8mm E70XX) on the end of the member.
- Connection plates are 350W steel and 14mm thick

[63]

QUESTION 3

Determine if a simply supported SA Pine solid beam (75 x 300 grade 10) spanning 3.5m is adequate to resist the load given below. The beam is laterally supported along the entire compression edge.

Determine the following:

•	3.1 The maximum generated ultimate moment and ultimate shear force	(4)
•	3.2 The bending resistance of the beam	(11)
•	3.3 Shear resistance of the beam	(4)
•	3.4 Compare the moment and shear resistance of the beam to the ultimate generated	(1)
	moment and shear.	(2)

Additional notes:

- The beams are spaced at 1 m centres
- The nominal uniformly distributed loads over the entire span of the beam is:
 - o Permanent (Dead) UDL = 3.0kNm (Inclusive of the beam's own weight)
 - o Imposed (Live) UDL = 4.2kNm
- This timber beam will support the above specified loads permanently.
- The SA pine beam is treated with preservatives