

SCHOOL OF MINES ENGINEERING METALLURGY NATIONAL DIPLOMA: ENGINEERING AND EXTRATIVE METALLURGY

SUBJECT:

PHYSICAL METALLURGY I

CODE:

PMY 11-1

DATE

: SUMMER SSA EXAMINATION 2017

10 JANUARY 2017

DURATION

: (SESSION 3) 15:00 - 18:00

EXAMINER:

TS TSHEPHE

MODERATOR:

Dr. K NYEMBWE

INSTRUCTIONS:

- 1. This paper consist of 3 pages
- 2. Answer all questions.
- 3. Calculators are permitted

QUESTION 1

- 1.1. There are five different classes of materials in material science. List the five classes and give two examples each (10)
- 1.2. Explain the materials design and selection process

(6)

QUESTION 2

- 2.1. Sketch tensile stress strain curves for the following materials:
 - (a) Metal

(2)

(b) Thermoplastic materials

(2)

(c) Elastomer

(2)

(d) Ceramics, glasses and concrete

- (2)
- 2.2. List five properties that can be obtained from tensile tests and explain each property
 - (15)

2.3. Explain the difference between hot and cold working

- (10)
- 2.4. Sketch a cooling curve for a pure metal and label the different regions
- (12)

QUESTION 3

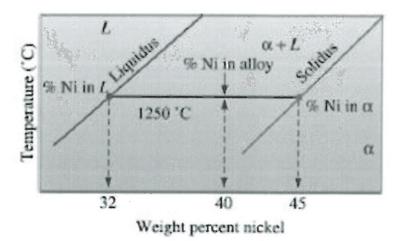
- 3.1. Suppose that liquid iron is undercooled until homogeneous nucleation occurs. Calculate
 - (a) the critical radius of the nucleus required; and

(3)

(b) the number of iron atoms in the nucleus.

(7)

Assume that the lattice parameter of the solid BCC iron is 2.92 Å.


QUESTION 4

- 4.1. Explain the most important three-phase reactions in binary phase diagrams using equations and sketches (10)
- 4.2. Draw and fully label the Fe-Fe₃C phase diagram

(15)

QUESTION 5

5.1. Calculate the amount of α and L at 1250 °C in the Cu-40 % Ni shown diagram below, using the lever rule (5)

TOTAL:

[101]

TABLE 9-1 Walues for freezing temperature, latent heat of fusion, surface energy, and maximum undercooling for selected materials

Metal	Freezing Temperature (T _m)	Heat of Fusion (ΔH_i) (J/cm^3)	Solid-Liquid Interfacial Energy (σ_{sl})	Typical Undercooling for Homogeneous Nucleation (Δ <i>T</i>)
Bi	271	543	54×10^{-7}	90
Pb	327	237	33×10^{-7}	80
Ag	962	965	126×10^{-7}	250
Cu	1085	1628	177×10^{-7}	236
Ni	1453	2756	255×10^{-7}	480
Fe	1538	1737	204×10^{-7}	420
NaCl	801			169
CsCl	645			152
H_2O	0			40

$$r^* = \frac{2\sigma_{sl}T_m}{\Delta H_f \Delta T}$$