

PROGRAM

: NATIONAL DIPLOMA

ENGINEERING METALLURGY

SUBJECT

: PRODUCTION OF IRON AND STEEL

CODE

: PRS21-1

DATE

: WINTER SSA EXAMINATION 2016

25 JULY 2016

DURATION

: (SESSION 1) 08:00 - 11:00

WEIGHT

: 40:60

TOTAL MARKS : 100

EXAMINER

: DR S BHERO

MODERATOR : DR N NAUDE

5063

NUMBER OF PAGES : 4 PAGES

INSTRUCTIONS : ANSWER ALL QUESTIONS

REQUIREMENTS : CALCULATOR

QUESTION 1 (40 MARKS)

Pertaining to preparation for iron making:

	U	to proputation for months.	
1.1	Com	ment on the reasons for the following pertaining to top gases:	
	1.1.1	Explain why crushing and screening of blast furnace input materials are undertaken.	(2)
	1.1.2	Why is blending of iron ore from various mines necessary?	(2)
	1.1.3	Why is coke and not coal charged into the furnace?	(2)
	1.1.4	Why is limestone and not lime charged into the furnace?	(2)
	1.1.5	Why -6mm particles screened off the blast furnace charge?	(2)
1.2	Pei	rtaining to blast furnace process:	
	1.2.1	What is the purpose of tuyere injections?	(2)
	1.2.2	Why is steam sometimes injected into the blast and what other benefit does steam bring?	(2)
	1.2.3	Why should top gases not allowed to escape to the atmosphere?	(2)
	1.2.4	What is the importance of the first reaction $C + O_2 = CO_2$?	(2)
	1.2.5	Why is particle size and particle size distribution critical for the blast furnace burden?	(2)
1.3	Per	taining to the blast furnace products:	
	1.3.1	What does the analysis of top gases show?	(2)
	1.3.2	What is the problem with slag basicity of less than 1?	(2)
	1.3.3	What are the disadvantages of high silicon iron for steel making?	(2)
	1.3.4	Why is high temperature recommended for good quality iron?	(2)
	1.3.5	What happens when blast furnace temperatures are too high?	(2)
1.4	Perta	aining to blast furnace equipment:	
	1.4.1	Why are tuyeres made of copper and why are they water cooled?	(2
	1.4.2	Why should temperatures of top gases be controlled?	(2)
	1.4.3	Why are different parts of the blast furnace lined with different refractories?	(2)
	1.4.4	Why is so much water used at the blast furnace?	(2)
	1.4.5	What are the reasons for the shape of different parts of the blast furnace?	(2)
			[40]

QUESTION 2 (40 MARKS)

2.1 Pertair	ning to LD charge:	
2.1.1 W	Thy is slag from the blast furnace unsuitable for the LD process?	(2)
2.1.2 W	Thy is it better to desuphurise before the LD process rather than after?	(2)
2.1.3 W	That is the purpose of charging scrap into the LD vessel?	(2)
2.1.4 W	Thy is lime charged at the beginning of the blow while iron ore is charged towards the end?	(2)
2.1.5 W	Thy is it advisable to charge hot metal first before scrap into the LD vessel?	(2)
2.2 Pertair	ning to the LD process:	
2.2.1 W	Thy is oxygen blown into the LD vessel?	(2)
2.2.2 D	erive an expression and deduce conditions for decarburisation in the LD vessel?	(2)
2.2.3 D	erive an expression and deduce conditions for desulphurisation.	(2)
2.2.4 W	Thy does sulphur content remain virtually unchanged despite blowing oxygen?	(2)
2.2.5 E	xplain the motivation of the carbon catch process.	(2)
2.3 Pertain	ring to the products of the LD process:	
2.3.1 W	Thy to top gases contain more O ₂ than N ₂ and more CO than CO ₂ ?	(2)
2.3.2 W	Thy is the LD slag basicity ≈ 3 and Fe ₂ O ₃ content also high?	(2)
2.3.3 D	o you think LD slag is suitable for sinter making? Give reason for your answer.	(2)
2.3.4 D	oes fluorspar enhance separation of metal and slag?	(2)
2.3.5 W	7ith blown metal of 0.05% C, how can you meet customer requirements of 0.002% C?	(2)
2.4 Hov	v do the following reduce the productivity at steel making?	
2.4.1 H	igh sulphur iron.	(2)
2.4.2 To	po low silicon iron.	(2)
	oo high silicon iron.	(2)
	oor quality lime.	(2)
2.4.5 O	verfilling the LD vessel.	(2)
		[40]

QUESTION 3 (20 MARKS)

3.1 Make calculations to determine temperature ranges for the following reactions:

$$3.1.1 \, \text{SiO}_2 + \text{C} = \text{Si} + \text{CO} \tag{3}$$

$$3.1.2 \text{ FeO} + \text{C} = \text{Fe} + \text{CO}$$
 (3)

$$3.1.3 \text{ FeO} + \text{CO} = \text{Fe} + \text{CO}_2$$
 (3)

3.2 Calculate free energies for the following reactions at 1327°C (1600K)?

$$3.2.1 \text{ Si} + \text{O}_2 = \text{SiO}_2 \tag{2}$$

$$3.2.2 \text{ Mn} + O = \text{MnO}$$
 (2)

$$3.2.3 C + \frac{1}{2}O_2 = 2CO_{(g)}$$
 (2)

$$3.2.4 \text{ Fe} + O_2 = \text{FeO}$$
 (2)

3.2.5 Determine the order of the above reactions in the LD vessel at start of blowing at 1327°C. (2)

[20]

Thermodynamic data

$$C + \frac{1}{2}O_2 = 2CO_{(g)}$$
 $\Delta G^o = -111700 - 88T$

$$C + O_2 = CO_{2(g)}$$
 $\Delta G^0 = -394100 - 0.8T$

$$Mn + \frac{1}{2}O_2 = MnO$$
 $\Delta G^0 = -403000 + 90T$

$$Si + O_2 = SiO_2$$
 $\Delta G^o = -941000 + 190T$

$$2Fe + \frac{3}{2}O_2 = Fe_2O_3$$
 $\Delta G^0 = -810520 + 254T$