

PROGRAM

: NATIONAL DIPLOMA

ENGINEERING METALLURGY

SUBJECT

: PRODUCTION OF IRON AND STEEL

CODE

: PRS21-1

DATE

: WINTER EXAMINATION 2016

14 JUNE 2016

<u>DURATION</u> : (SESSION 2) 12:30 - 15:30

WEIGHT

: 40:60

TOTAL MARKS : 100

<u>EXAMINER</u> : DR S BHERO

MODERATOR : MS N NAUDE

5063

NUMBER OF PAGES : 4 PAGES

<u>INSTRUCTIONS</u> : ANSWER ALL QUESTIONS

REQUIREMENTS : CALCULATOR

3/...

QUESTION 1 (40 MARKS)

1.1	Bri	iefly explai	in reasons fo	or the follow	ing pertainin	ng to the blast furn	ace.				
	(a) Particle size distribution of the burden has to be optimum.										
	(b) Steam is sometimes injected into the furnace.										
	(c)	Sinter a be	etter charge	is better than	n lump ore.			(2)			
	(d)	The shape	of the furn	ace stack is a	n inverted c	one and the heartl	n has smaller	diamete			
		than the b	osh.					(2)			
	(e)	The blast	furnace is so	erved by thre	e stoves.			(2)			
1.2	Tal	ble 1 below	shows the	composition	of blast furr	nace slag in percer	ntage:				
		CaO	SiO ₂	Al_2O_3	MgO	FeO/Fe ₃ O ₄	P	S			
	1	46	35	11	8	1	0.04	1.5			
			(a)								
	(a)	Why is su	lphur much	higher than	phosphorus	in slag?		(2)			
	` '	(a) Why is sulphur much higher than phosphorus in slag? (b) Calculate the basicity of slag and comment on its suitability.									
	` '					e effect on the qu	ality of iron?	(2)			
	(d) What would you do to improve blast furnace conditions with respect to (c)?										
				arces of alum			,	(2)			
								` '			
1.3	Ho	w are the fe	ollowing co	nditions of tl	ne blast furn	ace corrected?					
	(a)	Slag and h	ot metal ter	nperatures a	re too low.			(2)			
	(b)	Slag basic	ity is 0.8 an	d slag is visc	cous.			(2)			
	(c) Top gas analysis is 16% CO, 15% CO ₂ , 3% H_2 and 10% H_2 O.										
	(d) Top gas temperature is 1000°C.										
	(e)	The furnac	ce is driving	too fast.				(2)			
1.4	Cot	mment whe	ether the me	tallurgist is o	correct or no	t on the following	about blast fi	ırnace:			
								(2)			
	(a) Blending of ores is unnecessary since reduction will still occur in the furnace.(b) If the furnace is too hot, wet ore can be charged to cool the furnace.										
	(b) If the furnace is too hot, wet ore can be charged to cool the furnace.(c) Phosphorus content in iron can be lowered by control of blast furnace process.										
				st productivi				(2) (2)			
	(2)	- ayoro mij		or broadon at	ej or mo ora	ot idilidoo.		(4)			

QUESTION 2 (40 MARKS)

2.1	W	nat are the reasons for the following pertaining to the LD steel making process:						
	(a)	Mixers are necessary for hot metal storage prior to LD blowing.	(2)					
	(b)	A desulphurising plant may not be necessary if blast furnace process is efficient.	(2)					
	(c)	High phosphorus iron may be tolerated in LD but not high sulphur.	(2)					
	(d)	High manganese iron may be tolerated in LD but not high silicon.	(2)					
	(e)	High coke iron may be tolerated in LD but not high blast furnace slag.	(2)					
2.2	W	ith reference to the blowing process briefly explain why:						
	(a)	Manganese and carbon are oxidized after silicon?	(2)					
	(b)	Lime is charged in the early stages of the blow?	(2)					
	(c)	The blow can sometimes be shortened to 15 minutes instead of 20?	(2)					
	(d)	Phosphorus is oxidized right at the end of the oxygen blow?	(2)					
	(e)	Carbon cannot be oxidised completely like silicon?	(2)					
2.3	Wi	th respect to end of blow i.e. "turn down", what action is taken if?						
	(a)	Temperature is too low e.g. 1599°C.	(2)					
	(b)	Phosphorus is too high, e.g. 0.08%.	(2)					
	(c)	Sulphur is too high, e.g. 0.09%.	(2)					
	(d)	Parts of refractory lining are getting warn.	(2)					
	(e)	There has been severe slopping during the blow.	(2)					
2.4	A 60 ton LD vessel has turn down analysis of 0.05% C, 0.15% Mn. Given that coke is							
	88% C, ferromanganese contains 80% Mn and ferrosilicon contains 64% Si, and that the							
	customer requires a steel grade with 0.45% C and 0.85% Mn and 0.2% Si, calculate:							
	(a) The amount of coke required.							
	(b)	The amount of ferromanganese required.	(2)					
	(c)	The amount of ferrosilicon required.	(2)					
	(d)	What may cause the amounts calculated in (a), (b) and (c) to be inadequate.	(2)					
	(e)	In view of your answer in (d), what steps will you take to always meet the grade?	(2)					

QUESTION 3 (20 MARKS)

3.1 Pertaining to iron making and steel making, explain why:						
(a) Iron making is a reduction process while steel making is an oxidising process.	(2)					
(b) High FeO/Fe ₂ O ₃ is desirable in LD slag but not in blast furnace slag.	(2)					
(c) Tapping temperatures are 1660°C for LD blown metal but 1450°C for hot metal.	(2)					
(d) LD top gases are high in O2 while blast furnace top gases are high in N2.	(2)					
(e) Refractories for the LD basic, but neutral for the BF hearth?	(2)					
3.2 In comparison between blast furnace (BF) and LD steel making processes:						
(a) Write balanced equations for the main reactions providing heat for processes.	(2)					
(b) BF and LD processes complement to control S and P in steel, why?	(2)					
(c) BF and LD batch are processes, why is tap-to-tap time longer at 8 hours for BF?	(2)					
(d) How does mineral dressing save on fluxes in BF?	(2)					
(e) Why are the Boudouard and "carbon boil" the main reactions for the BF and LD. ((2)					
Total = 10						