

PROGRAM

NATIONAL DIPLOMA

CHEMICAL ENGINEERING

SUBJECT

PROCESS CONTROL

CODE

ICP3111

DATE

SUMMER EXAMINATION

25 NOVEMBER 2016

DURATION

08:30-11:30

TOTAL MARKS

100

FULL MARKS

100

EXAMINER

: MRS T MASHIFANA AND MS T SITHOLE

MODERATOR

: DR H RUTTO

NUMBER OF PAGES

:6 PAGES INCLUDING COVER PAGE

INSTRUCTIONS:

CALCULATORS ARE ALLOWED (ONE PER STUDENT)

NO COMPUTER ALLOWED

ANSWER ALL QUESTIONS

Question 1: [25]

1.1. What are the requirements to be satisfied to meet plant or process objectives? Provide examples to support your answer. [10]

1.2. Ethanol is feed to continuous reactor with presence of Acid Sulphuric catalyzer to produce ethylene. Distillation process then will be applied to separate ethylene-H₂O mixture. Ethylene as a top product is then condensate with condenser to perform liquid ethylene. Hydrogenation of ethylene applies in another reactor with presence of Nickel catalyzer to produce ethane as a final product.

$$\begin{array}{c} \text{CH}_3\text{CH}_2\text{OH} & \xrightarrow{\text{H}_2\text{SO}_4} & \text{CH}_2\text{=CH}_2 + \text{H}_2\text{O} \\ \text{CH}_2\text{=CH}_2 + \text{H}_2 & \xrightarrow{\text{Ni}} & \text{CH}_3\text{CH}_3 \end{array}$$

(a) What is/are the reactant/s and the final product/s?

[3]

(b) List all the major equipment

[3]

(c) Develop a block flow diagram (BFD) for these processes.

[9]

Question 2 [20]

Figure 2 below shows a distillation column. The objective is to maintain the distillate composition flow rate back to the column at C_D and the flow rate in the tailings at F_T

By following the control system design steps, show how you will implement a control system to achieve the objectives.

Figure 2: Distillation column

Question 3	[20]
1. Draw a logic circuit for the following	
(a) $F = (A+B).C$	[3]
(b) $F = A + B.\overline{C + D}$	[3]
(c) $F = A.B + \overline{A.C}$	[4]
(d) $F = \overline{(A+B)}.(C+D).C$	[5]
A D' 1.1 1 1 1	- 1

2. Find the behaviour expression or alarm setting output for the following circuit (Neatly copy the circuit and label each signal stream labelled and show the final expression Q. [5]

Question 4	[15]
Question 4	[15]

A control with an equal percentage inherent characteric has a maximum Cv of 1300 and a rengeability of 40.

- (a) Calculate the % changes in the flow for every 10% change in valve. [5]
- (b) Calculate the values of Cv corresponding to valve travel from 10% to 40% by step of 10% draw a table containing these values. [10]

Question 5	[20]
(a) What are the types of error signal measurements? Give five	[5]
(b) What is the difference between an analogue and a digital signal?	[4]
(c) Explain the two main categories of control valve?	[4]
(d) What are the uses of op-amps? Give four	[4]
(e) Give three types of control valves?	[3]

Appendix A: Traditional digital logic gate symbols, Boolean functions and truth table

Туре	Distinctive shape	Boolean algebra between A & B	Meaning	Truth table		
AND	_ D-	$A\cdot B$	Output is true if and only if (iff) both A and B are true	INPUT OUTPUT A B A AND B O O O O 1 O 1 O O 1 1 1 1		
OR	→	A + B	True iff A is true, or B is true, or both.	INPUT OUTPUT A B A OR B 0 0 0 0 1 1 1 0 1 1 1 1		
NOT	- >-	\overline{A}	True iff A is false.	INPUT OUTPUT A NOT A 0 1 1 0		
NAND	_>-	$\overline{A\cdot B}$	A and B are not both true.	INPUT OUTPUT A B A NAND B 0 0 1 0 1 1 1 0 1 1 1 0		
<u>NOR</u>	→	$A + \overline{B}$	True iff neither A nor B .	INPUT OUTPUT A B A NOR B 0 0 1		

				0 1 1	1 0 1	0 0 0
XOR	⇒	$A \oplus B$	True iff A is not equal to B .	IN A 0 0 1 1 1	_	OUTPUT A XOR B 0 1 1 0
XNOR	⇒	$\overline{A\oplus B}$	True iff A is equal to B .	0 0 1 1	PUT B 0 1 0 1	OUTPUT A XNOR B 1 0 1