

PROGRAM

BACCALAUREUS TECHNOLOGIAE

CHEMICAL ENGINEERING

SUBJECT

PROCESS CONTROL IV

CODE

ICP411

DATE

SUMMER EXAMINATION

1 DECEMBER 2016

DURATION

3.0 HRS (PAPER) 8:30-11:30

TOTAL MARKS

100

FULL MARKS

100

EXAMINER

MRS T. MASHIFANA

MODERATOR

PROF. M.S. ONYANGO

NUMBER OF PAGES

FIVE (5) INCLUDING THIS COVER PAGE

INSTRUCTIONS

THIS IS A CLOSED BOOK EXAM

NON-PROGRAMMABLE CALCULATORS

PERMITTED (ONLY ONE PER CANDIDATE)

SHOW ALL UNITS IN CALCULATIONS!!!

ANSWER ALL THE QUESTIONS

NO ELECTRONIC DEVICES ALLOWED.

ICP411

QUESTION 1: Second order systems process modelling

A step change of magnitude 4 is introduced into a system having the following transfer function:

$$\frac{Y(s)}{X(s)} = \frac{10}{s^2 + 1.6s + 4}$$

Find:

- a) Y(t);
- b) Percent overshoot;
- c) Ultimate value of Y(t);
- d) Maximum value of Y(t) and
- e) Period of oscillation.

[35]

QUESTION 2: Feedback control

2.1. Derive the transfer function for

(a) Proportional controller

(4)

(b) Proportional-integral controller

(6)

2.2. Summarize the effect of the following control mode on a first order control loop

(a) Proportional-integral controller

(5)

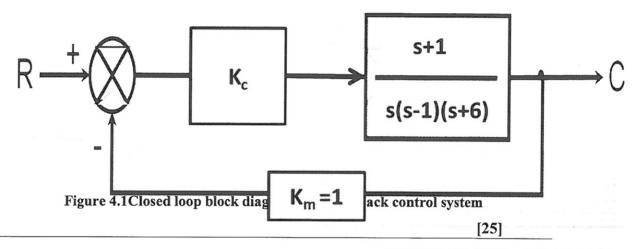
[15]

QUESTION 3: General feedback control loop stability criterion

Each of the following systems is feedback controlled with a proportional controller. Find the range values of the proportional gain K_c that produce stable (if it is possible) closed-loop response. Assume that $G_m = G_f = 1$.

a)
$$G_p(s) = \frac{2}{0.1s+1}$$
 (10)

b)
$$G_p(s) = \frac{10}{2s^2 + 3s - 4}$$
 (15)


[25]

ICP411

QUESTION 4: Routh-Hurwitz Criterion for Stability

Consider the closed loop feedback control system given in Figure 4.1 below

- a) Find the characteristic equation of the system
- b) Construct the Routh array for the control system
- c) In the system stable for Kc = 2.5? Why?
- d) Is the system stable for Kc = 7.5? Why?
- e) For what values of Kc will the system always be stable: why?

TOTAL MARKS = 100

FULL MARKS = 100

Laplace transforms table

Table of Laplace Transforms					
	$f(t) = \mathfrak{L}^{-1}\left\{F(s)\right\}$			$f(t) = \mathfrak{L}^{-1}\{F(s)\}$	$F(s) = \mathcal{L}\{f(t)\}$
1.	1	1 5	2.	e ^{ar}	$\frac{1}{s-a}$
3.	t^n , $n = 1, 2, 3,$	$\frac{H!}{S^{n+1}}$	4.	t^p , $p > -1$	$\frac{\Gamma(p+1)}{s^{p+1}}$
5.	\sqrt{t}	$\frac{\sqrt{\pi}}{2s^{\frac{3}{2}}}$	6.	$t^{n-\frac{1}{2}}, n=1,2,3,\dots$	$\frac{1\cdot 3\cdot 5\cdots (2n-1)\sqrt{\pi}}{2^n s^{\frac{n+2}{2}}}$
7.	$\sin(at)$	$\frac{a}{s^2 + a^2}$	8.	cos(at)	$\frac{s}{s^2 + a^2}$
9.	$t\sin(at)$	$\frac{2as}{\left(s^2+a^2\right)^2}$	10.	$t\cos(at)$	$\frac{s^2 - a^2}{\left(s^2 + a^2\right)^2}$
11.	$\sin(at) - at\cos(at)$	$\frac{2a^3}{\left(s^2+a^2\right)^2}$	12.	$\sin(at) + at\cos(at)$	$\frac{2as^2}{\left(s^2+a^2\right)^2}$
13.	$\cos(at) - at\sin(at)$	$\frac{s\left(s^2-a^2\right)}{\left(s^2+a^2\right)^2}$	14.	$\cos(at) + at\sin(at)$	$\frac{s\left(s^2+3a^2\right)}{\left(s^2+a^2\right)^2}$
15.	$\sin(at+b)$	$\frac{s\sin(b) + a\cos(b)}{s^2 + a^2}$	16.	$\cos(at+b)$	$\frac{s\cos(b) - a\sin(b)}{s^2 + a^2}$
17.	sinh(at)	$\frac{a}{s^2 - a^2}$	18.	$\cosh(at)$	$\frac{s}{s^2 - a^2}$
19.	$e^{\omega} \sin(bt)$	$\frac{b}{(s-a)^2+b^2}$	20.	$e^{at}\cos(bt)$	$\frac{s-a}{\left(s-a\right)^2+b^2}$
21.	$e^{at} \sinh(bt)$	$\frac{b}{(s-a)^2-b^2}$	22.	e" cosh(bt)	$\frac{s-a}{\left(s-a\right)^2-b^2}$
23.	$t^n e^{at}, n = 1, 2, 3, \dots$	$\frac{n!}{(s-a)^{n+1}}$	24.	$f(c\tau)$	$\frac{1}{c}F\left(\frac{s}{c}\right)$
25.	$u_{c}(t) = u(t-c)$	<u>e</u> -cr	26.	$\delta(t-c)$	e