

PROGRAM

: NATIONAL DIPLOMA

ENGINEERING: COMPUTER SYSTEMS

ENGINEERING: ELECTRICAL

SUBJECT

: ELECTROTECHNOLOGY

(EXTENDED)

CODE

: FELT 1111

DATE

: SUMMER EXAMINATION

21ST NOVEMBER 2016

DURATION

: (SESSION 1) 08:30 - 11:30

WEIGHT

: 40:60

TOTAL MARKS

: 108

EXAMINER

: MR A.F. COTTRELL

2009

MODERATOR

: MR P. BOKORO

NUMBER OF PAGES : 5 PAGES (including this page)

INSTRUCTIONS TO STUDENTS (TO BE READ):

- WORK IN PENCIL WILL NOT BE MARKED; 1.
- ALL WORK WITH THE EXCEPTION OF THE DIAGRAMS MUST BE IN INK. 2.
- ALL CALCULATIONS MUST BE SHOWN, NO MARKS FOR ANSWERS 3. ONLY.
- 1 MARK = 1%4.
- 5. OUESTIONS MAY BE ANSWERED IN ANY ORDER.
- ANY HAND-HELD CALCULATORS ARE PERMITTED

QUESTION 1

An electrical coil having 675 turns, is wound on a cylindrical former. The average diameter of each turn is 52 mm, and the diameter of the wire used is 1 mm. If the resistivity of the wire at 25° C, is $0.0176~\mu\Omega.m$, determine:					
1.1.1	The resistance of this coil. The D.C. voltage that must be applied to this coil in order to	(5)			
1.1.2	circulate 230 mA through it	(2)			
1.1.3	The power dissipated in this coil.	(2)			
1.1.4					
	be, if the applied voltage remains the same, and the temperature				
	of the coil rises to 65°C?	(4)			
Figure 1 shows a simple series-parallel circuit with parameters shown. Use your knowledge of Ohm's law and electric circuits, to find:					
1.2.1	Resistance, R ₃ .	(2)			
1.2.2	The voltage across resistor, R ₃ .	(2)			
		(2) (2)			
1.2.5	The total current, I _T .	(4)			
1.2.6	The current through R ₄ .	(2)			
1.2.7	The power dissipated in K_1 .	(2)			
		[29]			
TION	<u>2</u>				
Figure 2 shows a simple D.C. circuit. Use Kirchhoff's laws to solve for the unknown currents. Use the current and loop directions given, when setting up your simultaneous equations.					
A conductor having an effective length of 20 meters moves at 36 m/s, at right angles to a magnetic flux having a density of 0.43 tesla. Determine:					
2.2.1	The e.m.f. induced into the conductor.	(2)			
2.2.2	, , ,	(2)			
2.2.3	If the physical length of the 1.5 mm ² wire is 34 meters, and its resistivity,				
2.2.4		(4)			
~·~· '	this power?	(2)			
		[20]			
	figure knowl 1.2.1 1.2.2 1.2.3 1.2.4 1.2.5 1.2.6 1.2.7 Figure the unisetting A cone at right 2.2.1 2.2.2	diameter of each turn is 52 mm, and the diameter of the wire used is 1 mm. If the resistivity of the wire at 25°C, is 0.0176 μΩ.m, determine: 1.1.1 The resistance of this coil. 1.1.2 The D.C. voltage that must be applied to this coil in order to circulate 230 mA through it 1.1.3 The power dissipated in this coil. 1.1.4 If the temperature coefficient of resistance of the wire is 0.004264°C, at 0°C, what will the new resistance and current be, if the applied voltage remains the same, and the temperature of the coil rises to 65°C? Figure 1 shows a simple series-parallel circuit with parameters shown. Use your knowledge of Ohm's law and electric circuits, to find: 1.2.1 Resistance, R ₃ . 1.2.2 The voltage across resistor, R ₃ . 1.2.3 Resistance, R ₁ . 1.2.4 The voltage across Resistance, R ₅ . 1.2.5 The total current, I _T . 1.2.6 The current through R ₄ . 1.2.7 The power dissipated in R ₁ . STION 2 Figure 2 shows a simple D.C. circuit. Use Kirchhoff's laws to solve for the unknown currents. Use the current and loop directions given, when setting up your simultaneous equations. A conductor having an effective length of 20 meters moves at 36 m/s, at right angles to a magnetic flux having a density of 0.43 tesla. Determine: 2.2.1 The e.m.f. induced into the conductor. 2.2.2 If there is an external load of 11 Ω (and neglecting the resistance of the wire), find the current that will flow. 2.2.3 If the physical length of the 1.5 mm² wire is 34 meters, and its resistivity, 0.018 μΩm, what will the current be, now? 2.2.4 What force must be applied to the conductor in order to develop			

QUESTION 3

	3 shows a steel-cored torrofor the steel. Determine for		all information & dimensions, and alcounting circuit:	ongside, a B/H			
curve	3.1 The density of the	_		(2)			
	3.2 The magnetic field	(2)					
	3.3 The mmf.	(1)					
	3.4 The current.	(3)					
	3.5 The reluctance of	the core		(2)			
			cut through the ring (having the	(2)			
	same cross section	as the ri	ng), find, for this new situation, maintained constant:				
			strength of the gap.	(2)			
	3.6.3 The new cu	ırrent.		(2)			
				[16]			
OUES	TION 4						
4.1	Convert the numbers give	n as per i	nstruction:				
a.)	547 ₁₀ into Binary.	c.)	793 ₈ into Binary.				
b.)	10110100 ₂ into Decimal	d.)	1673 ₁₀ into Octal	(8)			
4.2	Consider Figure 4. Name each of the gates in the space provided, and						
	fill in the truth table for ea	(6)					
				[14]			
QUES	TION 5			נידן			
5.1	Differentiate between "N-	(8)					
5.2	How is an ideal characterist						
	from a practical characteri and point out the difference	(12)					
				[20]			
QUES	TION 6			[20]			
6.1	Three impedances in series	s have the	e following voltage drops, expressed	in			
	Three impedances in series have the following voltage drops, expressed in trigonometric form:						
	$v_1 = 64.13 Sin(\omega t + 48.4^\circ) volt$						
	$v_2 = 186Sin(\omega t - 29.6^\circ) vo$						
Detarm	$v_3 = 115.4 Sin(\omega t + 22.38^{\circ})$ ine the voltage supplied ac		whole circuit	[0]			
Detell	me me vonage supplied ac	ioss ille /	whole circuit.	[9]			
TOTAL				[108]			

Magnetic Field Strength, in ampere per meter. (x 100)

B

PLEASE HAND IN THIS PAGE. PUT IT INSIDE YOUR ANSWER SCRIPT SURNAME: _____(OPTIONAL) STUDENT NUMBER: _____ **QUESTION 4.2** \mathbf{B} X B \mathbf{X} \mathbf{B} 0 0 0 0 0 0 0 1 1 0 0 0 1 0 1 (a) Gate Name: (b) Gate Name: (c) Gate Name:

Figure 4