UNIVERSITY
 OF
 JOHANNESBURG

DEPARTMENT OF ECONOMICS AND ECONOMETRICS

UNIVERSITY OF JOHANNESBURG

Auckland Park Kingsway Campus

Assessor: Ms Q M Mabe
Internal Assessor: Prof J Mwamba
External Assessor: Mr T Mokoka JUNE EXAM:QUANTITATIVE ECONOMICS QTE3AA3

28 MAY 2016
TIME: 3 Hours
TOTAL MARKS: 100

Instructions:

- Answer all the questions
- Write neatly and legibly
- Justify all your steps with mathematical theory
- Use pen, not pencil

Question 1

1. Suppose $F: U \rightarrow R^{1}$ is a real valued function of n variables, whose domain is a subset of $R^{n} . x^{*} \in U$ is a strict max if [2marks]
(a) x^{*} is a max and $F\left(x^{*}\right)>F(x)$ for all $x^{*} \neq x$ in U
(b) if $F(x *)=F(x)$ for all x not equals to x^{*} in U
(c) if $F(x *) \leq F(x)$ for all $x \neq x^{*}$ in U
(d) if $F(x *) \geq F(x)$ for all x in U
(e) if $F(x *) \geq F(x)$ for all x not equals to x^{*} in U
2. A real valued function f defined on a convex subset U of R^{n} is concave if for all $x, y \in U$ and for all $0 \leq t \leq 1$ [2marks]
(a) $f(t x+(1-t) y) \leq t f(x)+(1-t) f(y)$
(b) $f^{\prime}(x)^{\prime}(a)$
(c) $f(t x+(1-t) y)=t f(x)+(1-t) f(y)$
(d) $f(t x+(1-t) y) \geq t f(x)+(1-t) f(y)$
(e) if f is defined on a non-covex set
3. Let A be a 5×5 matrix the 3rd order principal submatrix of A i.e $\left|A_{3}\right|$ is formed by deleting [2marks]
(a) 2 rows and 3 colomns
(b) 2 rows and 2 colomns
(c) 1 row and 1 colomn
(d) 3 rows and 1 colomn
(e) 2 rows and 1 colomn
4. Let C be a subset of R^{n}. Let $u_{1}, \ldots \ldots, u_{A}$ be real valued functions on C. Then, $U=$ $u_{1}, \ldots . ., u_{A}$ has a Pareto Optimum at $X^{*} \in C$ if there is no $X \in C$ such that [2marks]
(a) $u_{i}(X) \leq \mathrm{u}_{i}\left(X^{*}\right)$ for all i and $u_{j}(X) \leq \mathrm{u}_{j}\left(X^{*}\right)$ for some j and $U(X) \geq U\left(X^{*}\right)$
(b) $u_{i}(X) \leq u_{i}\left(X^{*}\right)$ for all i
(c) $u_{i}(X) \geq \mathrm{u}_{i}\left(X^{*}\right)$ for all i
(d) $u_{i}(X)=u_{i}\left(X^{*}\right)$ for all i
(e) $u_{i}(X) \geq \mathrm{u}_{i}\left(X^{*}\right)$ for all i and $u_{j}(X) \geq \mathrm{u}_{j}\left(X^{*}\right)$ for some j and $U(X) \neq U\left(X^{*}\right)$
5. Which of the following functions are monotonic transformation of R_{+}[2marks]
(a) (ii),(v),(iv) are correct
(b) (i),(iv),(v) are correct
(c) (i),(iii),(iv) are correct
(d) (i),(ii),(v) are correct
(e) (i),(v),(iii) are correct
i $z^{4}+z^{2}$

$$
\begin{aligned}
& \text { ii } z^{4}-z^{2} \\
& \text { iii }-z^{2}+4 \\
& \text { iv } \frac{z}{z+1} \\
& \text { v } \sqrt{z^{2}+4}
\end{aligned}
$$

TOTAL MARKS FOR QUESTION 1 [10 marks]

QUESTION 2

1. Given the matrix $A=\left(\begin{array}{ccc}-1 & 1 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & -2\end{array}\right)$
(a) Establish the definiteness of A. [3marks]
(b) Find the corresponding $Q(X)=X^{T} A X$. [2marks]
2. Given the quadratic $Q\left(x_{1}, x_{2}, x_{3}\right)=x_{1}^{2}-x_{3}^{2}+4 x_{1} x_{2}-6 x_{2} x_{3}$ subject to $x_{1}+x_{2}-x_{3}=0$
(a) Form the bordered matrix H for the above quadratic and its constraints. [4marks]
3. Given, $f(x, y)=x y(9-x-y)$ subject to the constraints $x+y \leq 5, x \geq 0$ and $y \geq 0$
(a) Form the Kuhn-Tucker Lagrangian of the above equation. [3marks]
(b) Compute the first order conditions in terms of Kuhn Tucker Lagrangian. [6marks] Hint: Kuhn Tucker first order conditions are $\frac{\partial L}{\partial X_{i}} \leq 0, \frac{\partial L}{\partial \lambda_{i}} \geq 0, \lambda_{i} \frac{\partial L}{\partial \lambda_{i}}=0, X_{i} \frac{\partial L}{\partial X_{i}}=0$

TOTAL MARKS FOR QUESTION 2 [20 marks]

QUESTION 3

1. Suppose we have a refinery that must ship finished goods to some storage tanks. Suppose further that there are two pipelines, A and B, to do the shipping. The cost of shipping x units on A is $a x^{2}$; the cost of shipping y units on B is $b y^{2}$, where $a>0$ and $b>0$ are given. How can we ship Q units while minimizing cost? Hint: Minimize $a x^{2}+b y^{2}$ Subject to $x+y=Q$
(a) Form the Lagrangian of (1) above. [3marks]
(b) Solve for the optimal x^{*} and y^{*} as well as the multiplier. [4marks]
(c) Establish that the cost is indeed minimised. [4marks]
(d) What happens to the cost if Q increases by r percent. [1marks]
2. Given the function $f(x, y)=x^{2}-6 x y+2 y^{2}+10 x+2 y-5$
(a) Find the critical points of x and y. [4marks]
(b) Find the Hessian of $f(x, y)$ above. [4marks]
(c) Establish if the critical points are local max, local min or saddle points. [4marks]

TOTAL MARKS FOR QUESTION 3 [26 marks]

Question 4

1. Given the problem: Minimise $f(x, y)=x^{2}-2 y$ subject to the constraints $x^{2}+y^{2} \leq 1$, $x \geq 0, y \geq 0$
(a) Establish that the NDCQ holds, that is, find the rank of the Jacobian of the constraints. [2marks]
(b) Form the Lagrangian of the above minimisation problem. [1mark]
(c) State all the conditions that corresponds to all the existing multipliers. [4marks]
(d) Solve for x, y and multipliers such that the conditions stated above are satisfied.Hint: Also solve for values that lead to contradiction, and clearly state that there is a contradiction if that is the case.
[4marks]
2. Suppose the demand function is given by $P=a-b Q$ where P is the price and Q is the quantity. Assume that the parameters $a, b, c \geq 0$ and $c<a$, where c is the cost. The monopolist wants to maximise the profit function $\pi(Q, a, b, c)=(P-c) Q$
(a) Write the expression for the profit function. Hint: $P=a-b Q$. [2marks]
(b) Solve for $Q^{*}(a, b, c)$. [2marks]
(c) Use the Envelope Theorem to come up with an expression $\frac{d \pi}{d a}, \frac{d \pi}{d b} \frac{d \pi}{d c}$. [6marks]
(d) Determine the sign of $\frac{d \pi}{d c}$, and its interpretation. [2marks]
(e) Plug $Q^{*}(a, b, c)$ into $\pi(Q, a, b, c)$ to solve for the value function $\pi(a, b, c)$. [2marks]

TOTAL MARKS FOR QUESTION 4 [24 marks]

Question 5

1. Prove that the product of a homogeneous functions is homogeneous. [4marks]
2. Suppose the utility function for goods x and y is given by $U(X, Y)=\alpha \ln x+\beta \ln y$ subject to $x P_{x}+y P_{y}=I$
(a) Calculate the uncompensated (Marshallian) demand functions for x and y. [4marks]
(b) How does the demand for x changes when I changes. [2marks]
(c) How does the demand for y changes when I changes. [2marks]
(d) Compute own price elasticity, cross price elasticity and income elasticity of Good x and Good y.[6marks]
3. Consider the Cobb-Douglas function $f(x ; y)=c x^{a} y b$ with $a ; b ; c>0$ in the first orthant $x>0 ; y>0$. Establish the concavity of $f(x ; y)$. [4marks]

TOTAL MARKS FOR QUESTION 2 [22 marks]

