

DEPARTMENT OF ECONOMICS AND ECONOMETRICS

UNIVERSITY OF JOHANNESBURG

AUCKLAND PARK KINGSWAY CAMPUS

Assessor: Ms Q M Mabe

Internal Assessor: Prof J Mwamba

External Assessor: Mr T Mokoka

JUNE EXAM: QUANTITATIVE ECONOMICS QTE3AA3

28 May 2016

TIME: 3 Hours

TOTAL MARKS: 100

Instructions:

- Answer all the questions
- Write neatly and legibly
- Justify all your steps with mathematical theory
- Use pen, not pencil

Question 1

- 1. Suppose $F: U \to R^1$ is a real valued function of n variables, whose domain is a subset of R^n . $x^* \in U$ is a strict max if $\lceil 2 \text{marks} \rceil$
 - (a) x^* is a max and $F(x^*) > F(x)$ for all $x^* \neq x$ in U
 - (b) if F(x*) = F(x) for all x not equals to x^* in U
 - (c) if $F(x*) \leq F(x)$ for all $x \neq x^*$ in U
 - (d) if $F(x*) \ge F(x)$ for all x in U
 - (e) if $F(x*) \ge F(x)$ for all x not equals to x^* in U
- 2. A real valued function f defined on a convex subset U of \mathbb{R}^n is concave if for all $x,y\in U$ and for all $0\leq t\leq 1$ [2marks]
 - (a) $f(tx + (1-t)y) \le tf(x) + (1-t)f(y)$
 - (b) f'(x)'(a)
 - (c) f(tx + (1-t)y) = tf(x) + (1-t)f(y)
 - (d) $f(tx + (1-t)y) \ge tf(x) + (1-t)f(y)$
 - (e) if f is defined on a non-covex set
- 3. Let A be a 5×5 matrix the 3rd order principal submatrix of A i.e $|A_3|$ is formed by deleting [2marks]
 - (a) 2 rows and 3 colomns
 - (b) 2 rows and 2 colomns
 - (c) 1 row and 1 colomn
 - (d) 3 rows and 1 colomn
 - (e) 2 rows and 1 colomn
- 4. Let C be a subset of R^n . Let u_1, \ldots, u_A be real valued functions on C. Then, $U = u_1, \ldots, u_A$ has a Pareto Optimum at $X^* \in C$ if there is no $X \in C$ such that [2marks]
 - (a) $u_i(X) \leq u_i(X^*)$ for all i and $u_i(X) \leq u_i(X^*)$ for some j and $U(X) \geq U(X^*)$
 - (b) $u_i(X) \leq u_i(X^*)$ for all i
 - (c) $u_i(X) \ge u_i(X^*)$ for all i
 - (d) $u_i(X) = u_i(X^*)$ for all i
 - (e) $u_i(X) \ge u_i(X^*)$ for all i and $u_j(X) \ge u_j(X^*)$ for some j and $U(X) \ne U(X^*)$
- 5. Which of the following functions are monotonic transformation of R_{+} [2marks]
 - (a) (ii),(v),(iv) are correct
 - (b) (i),(iv),(v) are correct
 - (c) (i),(iii),(iv) are correct
 - (d) (i),(ii),(v) are correct
 - (e) (i),(v),(iii) are correct
 - i $z^4 + z^2$

ii
$$z^4 - z^2$$

iii
$$-z^2+4$$

iv
$$\frac{z}{z+1}$$

$$v \sqrt{z^2+4}$$

TOTAL MARKS FOR QUESTION 1 [$10~{\rm marks}]$

QUESTION 2

- 1. Given the matrix $A = \begin{pmatrix} -1 & 1 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & -2 \end{pmatrix}$
 - (a) Establish the definiteness of A. [3marks]
 - (b) Find the corresponding $Q(X) = X^T A X$. [2marks]
- 2. Given the quadratic $Q(x_1, x_2, x_3) = x_1^2 x_3^2 + 4x_1x_2 6x_2x_3$ subject to $x_1 + x_2 x_3 = 0$
 - (a) Form the bordered matrix H for the above quadratic and its constraints. [4marks]
- 3. Given, f(x,y) = xy(9-x-y) subject to the constraints $x+y \le 5, x \ge 0$ and $y \ge 0$
 - (a) Form the Kuhn-Tucker Lagrangian of the above equation. [3marks]
 - (b) Compute the first order conditions in terms of Kuhn Tucker Lagrangian. [6marks] Hint: Kuhn Tucker first order conditions are $\frac{\partial L}{\partial X_i} \leq 0, \frac{\partial L}{\partial \lambda_i} \geq 0, \lambda_i \frac{\partial L}{\partial \lambda_i} = 0, X_i \frac{\partial L}{\partial X_i} = 0$

TOTAL MARKS FOR QUESTION 2 [20 marks]

QUESTION 3

- 1. Suppose we have a refinery that must ship finished goods to some storage tanks. Suppose further that there are two pipelines, A and B, to do the shipping. The cost of shipping x units on A is ax^2 ; the cost of shipping y units on B is by^2 , where a>0 and b>0 are given. How can we ship Q units while minimizing cost? Hint: Minimize ax^2+by^2 Subject to x+y=Q
 - (a) Form the Lagrangian of (1) above. [3marks]
 - (b) Solve for the optimal x^* and y^* as well as the multiplier. [4marks]
 - (c) Establish that the cost is indeed minimised. [4marks]
 - (d) What happens to the cost if Q increases by r percent. [1marks]
- 2. Given the function $f(x, y) = x^2 6xy + 2y^2 + 10x + 2y 5$
 - (a) Find the critical points of x and y. [4marks]
 - (b) Find the Hessian of f(x, y) above. [4marks]
 - (c) Establish if the critical points are local max, local min or saddle points. [4marks]

TOTAL MARKS FOR QUESTION 3 [26 marks]

Question 4

- 1. Given the problem: Minimise $f(x,y)=x^2-2y$ subject to the constraints $x^2+y^2\leq 1,$ $x\geq 0, y\geq 0$
 - (a) Establish that the NDCQ holds, that is, find the rank of the Jacobian of the constraints. [2marks]
 - (b) Form the Lagrangian of the above minimisation problem. [1mark]
 - (c) State all the conditions that corresponds to all the existing multipliers. [4marks]
 - (d) Solve for x, y and multipliers such that the conditions stated above are satisfied. Hint: Also solve for values that lead to contradiction, and clearly state that there is a contradiction if that is the case.

 [4marks]
- 2. Suppose the demand function is given by P = a bQ where P is the price and Q is the quantity. Assume that the parameters $a, b, c \ge 0$ and c < a, where c is the cost. The monopolist wants to maximise the profit function $\pi(Q, a, b, c) = (P c)Q$
 - (a) Write the expression for the profit function. Hint:P = a bQ. [2marks]
 - (b) Solve for $Q^*(a, b, c)$. [2marks]
 - (c) Use the Envelope Theorem to come up with an expression $\frac{d\pi}{da}$, $\frac{d\pi}{db}$ $\frac{d\pi}{dc}$. [6marks]
 - (d) Determine the sign of $\frac{d\pi}{dc}$, and its interpretation. [2marks]
 - (e) Plug $Q^*(a,b,c)$ into $\pi(Q,a,b,c)$ to solve for the value function $\pi(a,b,c)$. [2marks]

TOTAL MARKS FOR QUESTION 4 [24 marks]

Question 5

- 1. Prove that the product of a homogeneous functions is homogeneous. [4marks]
- 2. Suppose the utility function for goods x and y is given by $U(X,Y)=\alpha lnx+\beta lny$ subject to $xP_x+yP_y=I$
 - (a) Calculate the uncompensated (Marshallian) demand functions for x and y. [4marks]
 - (b) How does the demand for x changes when I changes. [2marks]
 - (c) How does the demand for y changes when I changes. [2marks]
 - (d) Compute own price elasticity, cross price elasticity and income elasticity of Good x and Good y. [6marks]
- 3. Consider the Cobb-Douglas function $f(x;y) = cx^ayb$ with a;b;c>0 in the first orthant x>0;y>0. Establish the concavity of f(x;y). [4marks]

TOTAL MARKS FOR QUESTION 2 [22 marks]