

PROGRAM : NATIONAL DIPLOMA

ELECTRICAL ENGINEERING

SUBJECT : **STRUCTURES**

<u>CODE</u> : SAC3000 / SAC331

DATE : SUMMER EXAMINATION

7 NOVEMBER 2014

<u>DURATION</u> : (X-PAPER) 08:30 - 11:30

<u>WEIGHT</u> : 40: 60

TOTAL MARKS : 100

EXAMINER DR I MUSONDA Sanso Number

MODERATOR : MR F THAIMO File Number

NUMBER OF PAGES : 4 PAGES

INSTRUCTIONS

REQUIREMENTS: FORMULAR SHEETS PROVIDED BY THE UNIVERSITY

SUBJECT AND CODE - 2 -

INSTRUCTIONS TO CANDIDATES:

PLEASE ANSWER ALL THE QUESTIONS.

QUESTION 1 [20]

Determine the shearing forces, bending moments and draw the shear and bending moment diagrams for the beam shown in figure 1.0 below

Fig 1.0

QUESTION 2 [15]

Determine the reactions and the type and magnitude of the forces in the members of the frames shown in figure 2.0. Label each node in clockwise direction alphabetically.

QUESTION 3 [15]

Timber beams spanning 4m in one direction only and spaced at 3m centre to centre support a timber floor comprising joists and boards with plaster ceiling. Other design data

- Self-weight of boards and floor joists
 Self-weight of ceiling
 0.23KN/m2
 0.22 KN/m2
- Self-weight of one timber beam
 0.6 KN
- The floor is part of a residential house

Determine the total ultimate design load for each beam.

QUESTION 4 [15]

A simply supported rectangular beam, size 400 x230mm is subjected to a moment of 100.4KNM and reactions at the support are 100.4KN. Given that the characteristic strength of main reinforcement steel is 460N/mm², for the stirrups is 250N/mm² and that of concrete is 30 N/mm², determine the reinforcement requirements for bending and shear. Take the effective depth of the beam to be 354.5mm.

QUESTION 5 [15]

A concrete floor reinforced with 10mm diameter mild steel bars (f_y =250 N/mm²) at 125mm centre to centre (A_s =628mm² per metre width of slab) between brick walls as shown in figure 3.0 below. Calculate the maximum uniformly distributed imposed load the floor can carry. Material strength: f_{cu} = 30 N/mm², f_y =250 N/mm², concrete cover = 25mm, concrete weight=24 kNm³

Fig 3.0

QUESTION 6 [20]

The figure below shows the loads on a 14m beam. The beam is a 533x210x82kg/m l-beam and is simply supported as shown at A and B. Determine the maximum bending stress in the beam. Also determine the average shear stress on the web of the beam. Use elastic theory.

[17]

Fig 3.0