

PROGRAM

: NATIONAL DIPLOMA

ENGINEERING METALLURGY

SUBJECT

: PRODUCTION OF IRON AND STEEL 3

CODE

: PRS302

DATE

: NOVEMBER EXAMINATION 2014

15 NOVEMBER 2014

DURATION

: 08:30 - 11:30

WEIGHT : 40:60

TOTAL MARKS : 100

EXAMINER DR X PAN

MODERATOR M HENDERSON

4021

NUMBER OF PAGES : 3 PAGES

INSTRUCTIONS : ANSWER ALL QUESTIONS

REQUIREMENTS : CALCULATOR

QUESTION 1 (5 marks)

Give the names of following minerals that exist in the chrome ore used to produce ferrochrome:

- 1. FeOCr2O3
- 2. FeOFe2O3
- 3. FeOAl2O3
- 4. MgOCr2O3
- 5. MgOAl2O3

	_ [5]
QUESTION 2 (5 marks)	
Give the full names of the five control levels in the process control hierarchy	
	[5]
QUESTION 3 (15 marks)	
Outokumpu process is one of the production processes used to produce charge chrome	in

South Africa. Draw the Outokumpu process flow-sheet (10 marks)

QUESTION 4 (15 marks)

Give 5 main factors and discuss how they affect the electrode penetration in a submerged arc furnace used to produce high carbon ferrochromium alloy.

[15]

[15]

QUESTION 5 (15 marks)

In the process of charge chrome production, chrome ore and other materials are fed in a closed SAF and are heated from 500 °C to 1700 °C. Some physicochemical reactions occur in the heating process. Please give 15 chemical reactions with carbon that may occur.

[15]

QUESTION 6 (45 marks)

Calculate the charge recipe for high carbon ferrochrome smelting in a submerged arc furnace, using the information of raw materials and product/slag given below in Table 1-2. The atomic

weights of some elements are listed in Table 3, and a SiO2-MgO-Al2O3 phase diagram is in Figure 1.

Start with a batch of 1750kg ore, then calculate the amount of flux (quartz) and reductant (coke), required to produce an alloy with 3-5% Si, 6-8% C and a slag with 12-14%Cr2O3, 6-8%FeO. The required liquidus temperature is 1700 °C for the slag of SiO2-MgO-Al2O3.

Table 1. Raw Material Composition

Name	Cr2O3%	FeO%	MgO%	SiO2%	A12O3%	H2O%	C%	
Ore	39	23	10	9	14	5	0	
Quartz	0	0	0	100	0	0	0	
Coke	0	0	0	7	4	0	89	

Table 2. Alloy and Slag Composition

Name	Cr2O3%	FeO%	MgO%	SiO2%	Al2O3%	Cr%	Fe%	C%	Si%
Slag	12-14	6-8	?	?	?	0	0	0	0
Alloy	0	0	0	0	0	?	?	6-8	3-5

Table 3. Atomic Weight

Element	Fe	Cr	Si	Al	Mg	0	C	Н
Weight	56	52	28	27	24	16	12	1

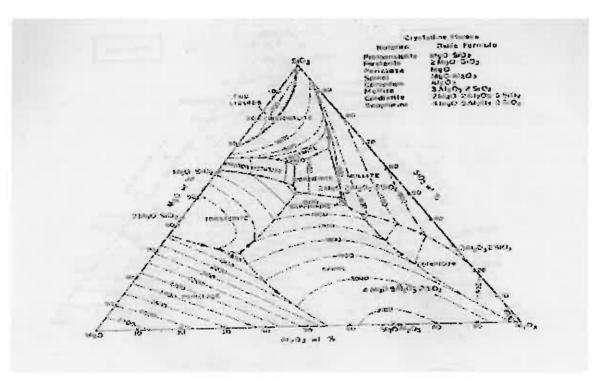


Figure 1. SiO2-MgO-Al2O3 Phase Diagram