

PROGRAM

NATIONAL DIPLOMA

ENGINEERING METALLURGY

SUBJECT

: EXTRACTIVE METALLURGY II

CODE

: TEX2111

DATE

: SUMMER EXAMINATION SSA 2014

01 DECEMBER 2014

DURATION

: (Y - PAPER) 11:30 - 14:30

WEIGHT

: 40:60

TOTAL MARKS

: 105

EXAMINER

: Dr. SC DU PLESSIS

MODERATOR

Mr. M. KALENGA

NUMBER OF PAGES

: 3

INSTRUCTIONS TO CANDIDATES:

- 1. PLEASE ANSWER ALL THE OUESTIONS.
- 2. CALCULATORS ARE ALLOWED.

Question 1

 $C_2H_2 = +226.9 \text{ MJ/kg mol}, CO_2 = -398.8 \text{ MJ/kg mol}, H_2O = -290.2 \text{ MJ/kg mol}$

Calculate the heats of reaction for the following reaction:

 $C_2H_2 + 5 O_2 = 4 CO_2 + 2 H_2O$

- in MJ per kg of C₂H₂
- in MJ per cubic meter of C₂H₂
- in MJ per cubic meter of CO2 formed

(15 marks)

Question 2

A zinc sulphide concentrate contains 50 percent Zn, 13 percent Fe, 32 percent S, and 5 percent SiO₂. When 100 kg is roasted with air, 85 kg of calcine with 54.5 percent Zn, 14.1 percent Fe, 2.7 percent S and 5.4 percent SiO₂ is obtained. The remaining percentages are assumed to be oxygen. The flue dust is assumed to have the same composition as the calcine. The roast gas contains 8 volume percent SO₂. Calculate

- 2.1 the weight of the flue dust and its content of the various components as well as
- 2.2 the volume (in Nm³) and
- 2.3 the composition of the roast gas, and
- 2.4 the volume of the air used. Air may be regarded as containing 21 volume percent of O_2 and 79 volume percent of N_2 .

(20 marks)

Question 3

A gold ore containing 20 % silica, 15 % pyrite, 15 % moisture and 50 % arsenopyrite assays 20g/t gold. In the context of recovery of gold, this ore is "dead" roasted in a roaster before been sent for cyanidation.

3.1 Why is this roasting necessary before cyanidation? (2 marks)

3.2 What would be the assay value of the calcine product in g/t gold? (10 marks)

3.3 Calculate the volume of SO₂ produced at STP. (4 marks)

3.4 How could the off gases from the roaster be cleaned before discharging it into the atmosphere? (4 marks)

EXTRACTIVE METALLURGY TEX2111

Question 3 (continued)

- 3.5 Why is it not practically possible to remove all S during this "dead" roasting? (3 marks)
- 3.6 What could be the influence of SiO_2 on this "dead" roasting? (3 marks)
- 3.7 Describe how the pressure of the gases in the roaster may influence the roasting process.

(4 marks)

Question 4

4.1 Describe the ferrochrome in South Africa with respect to mining, extraction metallurgy processing and uses. Explaining in detail other contributory factors. (20 marks)

Question 5

In fire refining we have the process cupellation. Please explain indepth what the process is.

(20 marks)

TOTAL MARKS: 105