

FACULTY OF SCIENCE

ACADEMY OF COMPUTER SCIENCE & SOFTWARE ENGINEERING

MODULE IFM3B10

ADVANCED SOFTWARE ENGINEERING

CAMPUS APK

EXAM NOVEMBER 2014

DATE 10 NOVEMBER 2014 **SESSION** 08H30 – 11H30

DURATION 3 HOURS **MARKS** 150

ASSESSOR MR T.D. MPHUTHI

INTERNAL MODERATOR DR W.S. LEUNG

EXTERNAL MODERATOR DR L. FUTCHER

PLEASE TAKE CAREFUL NOTE OF THE FOLLOWING:

- 1. All questions are compulsory.
- 2. Answer all questions that refer to the CASE STUDY, in relation to the CASE STUDY provided.
- 3. Answer all questions that do not refer to the CASE STUDY, in relation to the material covered during the course of the module.
- 4. Answer all questions in the ANSWER BOOK(S) supplied.
- 5. Note the mark allocation for each question: if a question is worth 2 marks, give at least two points' worth of answers.
- 6. Do NOT write in pencil. **Anything in pencil WILL NOT BE MARKED**.
- 7. Write neatly and legibly. We cannot mark what we cannot read.
- 8. **NO** calculators may be used.
- 9. This question paper consists of 6 (including this cover page) pages.

Quest	ion 1 – Software Testing	[14]
1.1	Briefly describe what the two concepts of verification and validation	(2)
	mean in terms of software engineering.	
1.2	Is the approach to verification and validation that is employed by the	(3)
	developers of the Zero-Poaching system (in the CASE STUDY)	
	sufficient for a system as large and critical as Zero-Poaching? Provide	
	two facts to support your answer.	
1.3	During development testing, testing may be carried out at three levels of	(6)
	granularity. Briefly name and describe each of these three levels of	
	granularity in development testing.	
1.4	Briefly describe how you would advise the developers of the Zero-	(3)
	Poaching system (in the CASE STUDY) such that they achieve their	
	desired software testing goals.	
Ougat	ion 2. Socurity Engineering	[14]
2.1	ion 2 – Security Engineering Name three system layers where security may be compromised.	
2.1		(3)
2.2	Identify two vulnerabilities that may arise from the architectural	(2)
	design decision made for the Zero-Poaching system (in the CASE	
0.0	STUDY).	(0)
2.3	List the three system protection layers that may be put in place in an	(3)
0.4	attempt to counter attacks on a system.	(0)
2.4	Propose three survivability strategies for dealing with the potential	(6)
	attack on ghsr-shop.com as described by the website's Chief	
	Administrator (in the CASE STUDY). Include one approach for	
	achieving each strategy proposed.	

Ques	tion 3 – Dependability and Security Assurance	[10]
3.1	What are the three static analysis techniques that may be used on	(3)
	critical systems, in addition to inspections and reviews?	
3.2	Briefly describe how you would measure the reliability of a system.	(5)
	You may use a diagram to aid your description.	
3.3	What is the difference between statistical testing and defect testing?	(2)
0	tion 4. Coffeen Fredrick	[A A
	tion 4 – Software Evolution	[14]
4.1	Use a diagram to illustrate how the Zero-Poaching system (in the	(5)
	CASE STUDY) will evolve throughout its lifetime.	
4.2	How would you refactor duplicate code?	(1)
4.3	What are the four basic issues that have to be discussed with	(4)
	system stakeholders when assessing the business value of a	
	system?	
4.4	a. Under which of the four clusters of legacy systems would you	(2)
	categorise the legacy system used by the Green House Safari	
	Resort (in the CASE STUDY)? Provide a reason for your answer.	
	b. What two strategic actions should the Green House Safari Resort's	(2)
	management take regarding the legacy system (in the CASE	
	STUDY)?	
Ques	<u>tion 5</u> – Project Management	[14]
5.1	What are the three main differences between software engineering	(3)
	and other forms of engineering?	
5.2	Briefly describe the risk management process.	(4)
5.3	a. What motivates an interaction-oriented person?	(1)
	b. What factors need to be addressed in order to resolve the poor	(3)
	teamwork within the software development team (discussed in the	
	CASE STUDY).	
5.4	Provide three types of risks that can be identified in the CASE STUDY.	(3)

Ques	stion 6 – Project Planning	[14]
6.1	What are the three stages in a project's life cycle where project	(3)
	planning takes place?	
6.2	Use a diagram to illustrate an activity bar chart for the Zero-Poaching	(5)
	system's development project (as described in the CASE STUDY), based	
	on the high-level project time-line presented in Table 1. Make sure to	
	take note of the duration, dependencies and end deliverables of each	
	task.	
6.3	Use basic algorithmic cost modelling to determine if the R800 000	(4)
	amount put aside by the Green House Safari Resort's management	
	(described in the CASE STUDY) will be sufficient for the project. Use the	
	cost modelling variables identified in Table 2 as the basis for your cost	
	estimation.	
6.4	Name two of the four sub-models of the COCOMO II model.	(2)
Ques	stion 7 – Quality Management	[14]
7.1	Briefly discuss the principal concerns of software quality	(2)
	management at the project levels.	
7.2	What are the two review activities that the Pre-Review phases of the	(2)
	software review process is typically concerned with?	
7.3	Briefly describe three internal attributes of the Zero-Poaching system	(6)
	that you can use to measure the most important external quality attribute	
	to the Green House Safari Resort's management (discussed in the	
	CASE STUDY)? Include a description of what each measurement will	
	imply for the external quality attribute.	
7.4	Briefly describe the Fan-in/Fan-out static software product metric, as	(4)
	well as what a high value means for this metric.	

Ques	tion 8 – Configuration Management	[12]
8.1	Briefly name and describe the four closely related configuration	(8)
	management activities.	
8.2	Name two features provided by version management systems.	(2)
8.3	Briefly distinguish between the use of timestamps and checksums as	(2)
	signatures for keeping track of source code versions.	
Ques	tion 9 – Process Improvement	[14]
9.1	Name and describe the three main stages of process improvement.	(6)
9.2	What are the three types of process metrics that can be collected	(3)
	when measuring processes?	
9.3	Which CMMI level of maturity would you assign to the Green House	(3)
	Safari Resort (in the CASE STUDY)? Provide two reasons to support	
	your answer.	
9.4	a. How does the continuous CMMI model differ from the staged	(1)
	CMMI model?	
	b. What advantage does the continuous CMMI model have over the	(1)
	staged CMMI model?	
Ques	tion 10 – Component-based Software Engineering	[10]
10.1	Name three essential elements of Component-based Software	(3)
	Engineering other than development processes.	
10.2	Use the UML notation to draw a diagram illustrating the two related	(5)
	interfaces of a component. Ensure that your diagram also includes a	
	description of the interfaces.	
10.3	Which component composition would be the most appropriate to use	(2)
	when integrating the Zero-Poaching system with the existing ghsr-	
	shop.com website (described in the CASE STUDY)? Provide a reason for	
	you answer.	

Quest	tion 11 – Service-Oriented Architecture	[8]
11.1	a. What does the acronym WSDL stand for in terms of Service-Oriented	(1)
	Architectures? b. What is the purpose of WSDL in terms of Service-Oriented Architectures?	(1)
11.2	Briefly name and describe the three logical stages in the service engineering process.	(6)
Quest	tion 12 – Legal and Ethical Aspects of IT	[12]
12.1	a. Briefly describe a legal person.	(2)
	b. How long would a copyright owned by a legal person remain in effect for?	(1)
12.2	Provide two examples of what would be considered unethical conduct	(2)
40.0	from an IT Professional.	(0)
12.3	,	(2)
12.4	Provide three approaches that you would use for dealing with spam .	(3)
12.5	IT professionals can be held morally and legally liable for their actions.	(2)
	Identify and discuss one type of ethical responsibility that is expected of	
	IT professionals.	