

PROGRAM

: BACCALAUREUS INGENERIAE

CIVIL ENGINEERING

SUBJECT

: Hydraulic Engineering 3B

CODE

: HMG3B21

DATE

: SUMMER EXAMINATION

11 NOVEMBER 2014

DURATION

: 3 HRS (SESSION 2) 12:30 - 15:30

WEIGHT

: 50:50

TOTAL MARKS

: 100

ASSESSOR

: DR MO DINKA

MODERATOR

: DR MS MAGOMBEYI

File Number: HMG3B 2014

02/11/2014

2/11/2014

NUMBER OF PAGES : 3 PAGES AND 2 ANNEXURES

INSTRUCTIONS

: QUESTION PAPERS MUST BE HANDED IN.

REQUIREMENTS

: 2 SHEETS OF PAPER.

INSTRUCTIONS TO STUDENTS:

PLEASE ANSWER ALL THE QUESTIONS.

PROVIDE SHORT AND PRECISE ANSWERSFOR THEORETICAL PART

SHOW THE STEPS FOR CALCULATION CLEARLY

PART I: FLOOD HYDROLOGY [50]

QUESTION 1: THEORY [20]

a) As a hydrologist, you are sent to Lake Sibaya in KwaZulu-Natal region to study its characteristics. What parameters (at least five) would you select and use to characterize the lake and its catchment. Define the parameters and explain the useful information you can obtain out of it.

b) Discuss the formation of orographic precipitation in South Africa. Write the conditions (stepwise) to be satisfied for the formation of precipitation. What are the lifting mechanisms responsible for the formation?

c) Why Area Reduction Factor (ARF) is applied to adjust rainfall in an area? (3 pts)

d) Define the following terms briefly: (ii) (b) Flood routing (2 pts each)

QUESTION 2 | 15

The hydrograph given bellow was measured at a point in a river. The river is characterized by an X value of 0.30 and has an average flood wave velocity of 1.1 m/s for a typical flood.

t (h)	0	2	4	6	8	10	14	18	22	26	30
Q (m ³ /s)	0	40	80	250	200	180	120	80	60	20	0

loave as it is

Evaluate the effect of flood at a point 8.5 km downstream of the measuring point. (-72+5) Determine the time required for the flood wave to travel from upstream to downstream. (4 pts)

Determine flood attenuation and lag time. (4 pts)

Assume reservoir was empty initially.

QUESTION 3 [15]

At certain climatic station, air pressure is measured as 120 KPa. The air temperature at saturated vapor pressure is 21 °C and the specific humidity is 0.006 kg H₂O/kg air. The air is now lifted orographically through a height of 1760 m above sea level. Take Ra = 287 Tkg/% Determine:

A
(a) Saturated and actual vapour pressures (mb) (4)
(b) Dew point temperature (°C) (3)
(c) Relative humidity (2)
(d) Air density (kg/m ³)
Will-it-be likely that it will rain?
(e) Is it likely that it will rain? (3)

PART II: OPEN CHANNEL [50]

QUESTION 4. THEORY [26]

Answer the following questions in short and precising

(a) Write Bernoulli's equation and state the assumptions.

(b) Write equation of a dimensionless parameter used to classify fluids flow into laminar or turbulent. Also give the ranges of the dimensionless parameter for laminar and turbulent flows for open channel.

(c) Define the occurrence of hydraulic jump and explain its advantages and disadvantages.

(d) Discuss the concept of control point in hydraulic smuchuses

(4 pts)

(5 pts)

(4 pts)

QUESTION 5 [14]

(a) Derive equation of energy loss due to hydraulic jump from basic principles.
(b) Derive Chezy Equation for uniform flow from basic principles
(7 pts)

QUESTION 6 [23]

Water flows at a rate of 20 m³/s in a trapezoidal channel with bottom width of 5m and side slope of 1.3.5 (V:H). The initial flow depth is 0.3m and the slope changes from steep to flat as shown in Figure. The conveyance factor of the channel is 400 and Manning's n is 0.025. Assume no head loss due to friction.

Calculate:

a) Normal depth and velocity (3)
b) Critical flow depth and velocity (3)
c) Normal and critical bed slopes (3)
d) Specific energy and sequent depth (3)
e) Reynold and Froude numbers and state their status (3)
f) Type of flow for a flow depth of 0.3 m (3)
g) Calculate the following if hydraulic jump will occurs (5)
(i)a. Downstream flow depth
(ii)b. Energy loss in the channel
(iii)c. Velocity downstream of the hydraulic jump
(iv)d. Height of jump
(v)e. Length of jump

FORMULA SHEET

Flood Hydrology

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
regional factor (coastal) = $\frac{122.8}{(1 + 4.779 - t)^{0.7571}}$ $C_2 = \frac{-K \times X + 0.5 \times \Delta t}{K - K \times X + 0.5 \times \Delta t}$ $T = \frac{a \times N + b}{c \times m + d}$ regional factor (inland) = $\frac{217.8}{(1 + 4.164 \times t)^{0.9522}}$ $C_3 = \frac{K - K \times X + 0.5 \times \Delta t}{K - K \times X + 0.5 \times \Delta t}$ $C_4 - C_2 + C_3 = 1$ MAP factor = $\frac{18.79 + 0.17 \times \text{MAP}}{100}$ $\frac{\Delta t}{2(1 - X)} \le K \le \frac{\Delta t}{2X}$ $S = \frac{a}{b + 1} \times h^{b - 1}$ ARF = $(90\ 000 - 12\ 800\ \ln A - 9\ 830\ \ln t)^{0.4}$ $S_{\text{temporary}} = \frac{a}{b + 1} \times \left[(h_{\text{FSL}} + h_{\text{everflow}})^{b - 1} - h_{\text{FSL}}^{b - 1} \right]$ $Q = C \times i \times A$ $t_c = \left[\frac{0.87 \times L^2}{1\ 000 \times S} \right]^{0.395}$ $Q_7 = K_a \times \frac{A}{T_L}$ $Q = 10^6 \times \left(\frac{A}{10^5} \right)^{1 - 0.1K}$ $Q = C \times i \times A$ $t_c = \left[\frac{0.87 \times L^2}{1\ 000 \times S} \right]^{0.395}$ $Q_7 = K_a \times \frac{A}{T_L}$ $Q = 10^6 \times \left(\frac{A}{10^5} \right)^{1 - 0.1K}$ $Q = C \times i \times A$ $Q = C$	$p = 1 - \left(1 - \frac{1}{T}\right)^N$ $G_2 = \left(\frac{I_1 + I_2}{2}\right) + G_1 - O_1$	$Q_2 = C_2 I_1 + C_1 I_2$	$I_2 + C$	C_3Q_1	
regional factor (inland) = $\frac{217.8}{(1+4.164 \times t)^{0.8332}}$ $C_1 = \frac{K - K \times X - 0.5 \times \Delta t}{K - K \times X + 0.5 \times \Delta t}$ $C_1 + C_2 + C_3 = 1$ MAP factor = $\frac{18.79 + 0.17 \times \text{MAP}}{100}$ $\frac{\Delta t}{2(1 - X)} = K \le \frac{\Delta t}{2X}$ $S = \frac{a}{b + 1} \times b^{b - 1}$ ARF = $(90.000 - 12.800 \text{ ln } A - 9.830 \text{ ln } t)^{0.4}$ $S_{\text{issupensity}} = \frac{a}{b + 1} \times \left[(h_{\text{FSL}} + h_{\text{invertion}})^{b - 1} - h_{\text{FSL}}^{b - 1} \right]$ $Q = C \times t \times A$ $t_c = \left(\frac{0.87 \times L^2}{1.000 \times S} \right)^{0.385}$ $Q_F = K_a \times \frac{A}{T_L}$ $Q = 10^6 \times \left(\frac{A}{10^3} \right)^{1 - 0.1K}$ $T_L = C_t \left(\frac{L \times L_c}{\sqrt{S}} \right)^{0.56}$ $\frac{V_c}{V_{50}} = 0.376 \text{ ln} \left(\frac{t}{3.5} \right)$ $Q = K \times h_{\text{evertion}}^{\frac{5}{2}}$ $K = \frac{2}{1 + x}$ $P_{t,T} = 1.13(0.41 + 0.64 \text{ ln } T)(-0.11 + 0.27 \text{ ln } t)(0.79M^{0.69}R^{0.2})$ $A = a^{\frac{1}{b - 1}} \times (b + 1)^{\frac{5}{b - 1}} \times S^{\frac{b}{2 - 1}}$ $C_T = \frac{C_2}{100} + \left(\frac{Y_T}{2.33} \right) \left(\frac{C_{100}}{100} - \frac{C_2}{100} \right)$ $P = 1$ T $G = \frac{\text{outflow}}{2} + \frac{\text{temporary storage}}{\Delta t}$ $e = 611 \exp \left[\frac{17.27 \times T_d}{237.3 + T_d} \right]$ $e_s = 611 \exp \left[\frac{17.27 \times T}{237.3 + T} \right]$ $q_v = 0.622 \frac{e}{P}$ $RH = \frac{e}{e_s}$ $\rho_a = \frac{P}{R_a T}$	$i = \text{regional factor} \times \text{MAP factor} \times \text{frequency}$ factor	$C_1 = \frac{K \times X + 0.5 \times 1}{K - K \times X + 0.5}$	$Q = xA_{\epsilon}^{\ j}$		
regional factor (inland) = $\frac{217.8}{(1+4.164 \times t)^{0.5352}}$ $C_1 = \frac{K - K \times X - 0.5 \times \Delta t}{K - K \times X + 0.5 \times \Delta t}$ $C_1 - C_2 + C_3 = 1$ MAP factor = $\frac{18.79 + 0.17 \times \text{MAP}}{100}$ $\frac{\Delta t}{2(1 - X)} = K \le \frac{\Delta t}{2X}$ $S = \frac{a}{b + 1} \times h^{b - 1}$ ARF = $(90.000 - 12.800 \ln A - 9.830 \ln t)^{0.4}$ $S_{\text{suspensey}} = \frac{a}{b + 1} \times \left[(h_{\text{FSL}} + h_{\text{swefow}})^{b - 1} - h_{\text{FSL}}^{b - 1} \right]$ $Q = C \times t \times A$ $t_c = \left(\frac{0.87 \times L^2}{1.000 \times S} \right)^{0.035}$ $Q_5 = K_a \times \frac{A}{T_L}$ $Q = 10^6 \times \left(\frac{A}{10^5} \right)^{1 - 0.1K}$ $T_L = C_t \left(\frac{L \times L_c}{\sqrt{S}} \right)^{0.56}$ $\frac{V_c}{V_{\text{eq}}} = 0.376 \ln \left(\frac{t}{3.5} \right)$ $Q = K \times h_{\text{elsentow}}^{\frac{1}{2}}$ $K = \frac{2}{1 + x}$ $P_{7.7} = 1.13(0.41 + 0.64 \ln T)(-0.11 + 0.27 \ln t)(0.79M^{0.59}R^{0.2})$ $A = a^{\frac{1}{1 + 1}} \times (b + 1)^{\frac{1}{9 - 1}} \times S^{\frac{1}{9 - 1}}$ $C_T = \frac{C_2}{100} + \left(\frac{Y_T}{2.33} \right) \left(\frac{C_{100}}{100} - \frac{C_2}{100} \right)$ $p = 1.T$ $G = \frac{\text{ourflow}}{2} + \frac{\text{temporary storage}}{\Delta t}$ $e = 611 \exp \left[\frac{17.27 \times T_d}{237.3 + T_d} \right]$ $e_s = 611 \exp \left[\frac{17.27 \times T}{237.3 + T} \right]$ $q_v = 0.622 \frac{e}{P}$ $RH = \frac{e}{e_s}$ $\rho_a = \frac{P}{R_a T}$ $Runoff Depth = \frac{V_{DRH}}{A}$ $K > \Delta t > 2KX$	regional factor (coastal) = $\frac{122.8}{(1 + 4.779 \times t)^{0.7372}}$	$C_2 = \frac{-K \times X + 0.5 \times 10^{-5}}{K - K \times X + 0.5}$	$T = \frac{a \times N + b}{c \times m + d}$		
ARF = (90 000 - 12 800 ln A - 9 830 ln $r_i^{0.4}$ $S_{\text{temporary}} = \frac{a}{b-1} \times \left[(h_{\text{FSL}} + h_{\text{evention}})^{b-1} - h_{\text{FSL}}^{-b-1} \right]$ $Q = C \times i \times A \qquad t_c = \left[\frac{0.87 \times L^2}{1\ 000 \times S} \right]^{0.385} \qquad Q_F = K_s \times \frac{A}{T_L} \qquad Q = 10^6 \times \left(\frac{A}{10^5} \right)^{1-0.16}$ $T_L = C_t \left(\frac{L \times L_c}{\sqrt{S}} \right)^{0.56} \qquad \frac{V_c}{V_{50}} = 0.376 \ln \left(\frac{t}{3.5} \right) \qquad Q = K \times h_{\text{evention}}^{\frac{1}{2}} \qquad K = \frac{2}{1+x}$ $P_{5,T} = 1.13(0.41 - 0.64 \ln T)(-0.11 - 0.27 \ln t)(0.79M^{0.69}R^{0.2}) \qquad A = a^{\frac{1}{b-1}} \times (b+1)^{\frac{1}{b-1}} \times S^{\frac{1}{b-1}}$ $C_T = \frac{C_2}{100} + \left \frac{Y_T}{2.33} \right \left(\frac{C_{100}}{100} - \frac{C_2}{100} \right) \qquad p = 1 T \qquad G = \frac{\text{cutflow}}{2} + \frac{\text{temporary storage}}{\Delta t}$ $e = 611 \exp \left[\frac{17.27 \times T_d}{237.3 + T_d} \right] \qquad e_s = 611 \exp \left[\frac{17.27 \times T}{237.3 + T} \right] \qquad q_v = 0.622 \frac{e}{P} \qquad RH = \frac{e}{e_s} \qquad \rho_a = \frac{P}{R_a T}$ $Runoff \ Depth = \frac{V_{DRH}}{A} \qquad K > \Delta t > 2KX$	regional factor (inland) = $\frac{217.8}{(1+4.164 \times t)^{0.5552}}$				
$Q = C \times i \times A \qquad \qquad t_{e} = \left(\frac{0.87 \times L^{2}}{1000 \times S}\right)^{0.385} \qquad Q_{7} = K_{u} \times \frac{A}{T_{L}} \qquad \qquad Q = 10^{6} \times \left(\frac{A}{10^{6}}\right)^{1-0.1K}$ $T_{L} = C_{t} \left(\frac{L \times L_{c}}{\sqrt{S}}\right)^{0.56} \qquad \frac{V_{c}}{V_{s0}} = 0.376 \ln\left(\frac{t}{3.5}\right) \qquad Q = K \times h_{exertion}^{\frac{1}{2}} \qquad K = \frac{2}{1+x}$ $P_{t,T} = 1.13(0.41 - 0.64 \ln T)(-0.11 - 0.27 \ln t)(0.79M^{0.69}R^{0.2}) A = a^{\frac{1}{b-1}} \times (b+1)^{\frac{5}{b-1}} \times S^{\frac{b}{b-1}}$ $C_{T} = \frac{C_{2}}{100} + \left(\frac{Y_{T}}{2.33}\right) \left(\frac{C_{100}}{100} - \frac{C_{2}}{100}\right) \qquad p = 1 T \qquad G = \frac{\text{outflow}}{2} + \frac{\text{temporary storage}}{\Delta t}$ $e = 611 \exp\left[\frac{17.27 \times T_{d}}{237.3 + T_{d}}\right] \qquad e_{s} = 611 \exp\left[\frac{17.27 \times T}{237.3 + T}\right] \qquad q_{v} = 0.622 \frac{e}{P} \qquad RH = \frac{e}{e_{s}} \qquad \rho_{a} = \frac{P}{R_{a}T}$ $Runoff \ Depth = \frac{V_{DRH}}{A} \qquad K > \Delta t > 2KX$	MAP factor = $\frac{18.79 + 0.17 \times MAP}{100}$	$\frac{\Delta t}{2(1-X)} \le K \le \frac{\Delta t}{2X}$	$S = \frac{a}{b+1} \cdot h^{b-1}$		
$T_{L} = C_{t} \left(\frac{L \times L_{c}}{\sqrt{S}} \right)^{0.56} \qquad \frac{V_{t}}{V_{t0}} = 0.376 \ln \left(\frac{t}{3.5} \right) \qquad Q = K \times h_{\text{eventors}}^{\frac{1}{2}} \qquad K = \frac{2}{1 + x}$ $P_{t,T} = 1.13(0.41 + 0.64 \ln T)(-0.11 - 0.27 \ln t)(0.79M^{0.69}R^{0.2}) A = a^{\frac{1}{b+1}} \times (b+1)^{\frac{5}{b-1}} \times S^{\frac{b}{b-1}}$ $C_{T} = \frac{C_{2}}{100} + \left \frac{Y_{T}}{2.33} \right \left(\frac{C_{100}}{100} - \frac{C_{2}}{100} \right) \qquad p = 1 T \qquad G = \frac{\text{courflow}}{2} + \frac{\text{temporary storage}}{\Delta t}$ $e = 611 \exp \left[\frac{17.27 * T_{d}}{237.3 + T_{d}} \right] \qquad e_{s} = 611 \exp \left[\frac{17.27 * T}{237.3 + T} \right] \qquad q_{v} = 0.622 \frac{e}{P} \qquad RH = \frac{e}{e_{s}} \qquad \rho_{a} = \frac{P}{R_{a}T}$ $Runoff \ Depth = \frac{V_{DRH}}{A} \qquad K > \Delta t > 2KX$	ARF = $(90\ 000 - 12\ 800\ \ln A + 9\ 830\ \ln r)^{0.4}$	$S_{\text{temperaty}} = \frac{a}{b-1} \times \left[(h_{\text{FS}})$	$_{\rm L}+h_{\rm over}$	f_{flow} $b^{b+1} - h_{FS}$	b+1]
$P_{s,T} = 1.13(0.41 - 0.64 \ln T)(-0.11 - 0.27 \ln t)(0.79M^{0.59}R^{0.2}) A = a^{\frac{1}{b-1}} \times (b+1)^{\frac{b}{b-1}} \times S^{\frac{b}{b-1}}$ $C_T = \frac{C_2}{100} + \left \frac{Y_T}{2.33} \right \left(\frac{C_{100}}{100} - \frac{C_2}{100} \right) p = 1 T G = \frac{\text{outflow}}{2} + \frac{\text{temporary storage}}{\Delta t}$ $e = 611 \exp \left[\frac{17.27 * T_d}{237.3 + T_d} \right] e_s = 611 \exp \left[\frac{17.27 * T}{237.3 + T} \right] q_v = 0.622 \frac{e}{P} RH = \frac{e}{e_s} \rho_a = \frac{P}{R_a T}$ $Runoff \ Depth = \frac{V_{DRH}}{A} K > \Delta t > 2KX$	11 000 × 3 /	$Q_F = K_u \times \frac{A}{T_L}$	$Q = 10^6 \times \left(\frac{A}{10^8}\right)^{1-0.1R}$		
$C_{T} = \frac{C_{2}}{100} + \left \frac{Y_{T}}{2.33} \right \left(\frac{C_{100}}{100} - \frac{C_{2}}{100} \right) \qquad p = 1 \ T \qquad G = \frac{\text{outflow}}{2} + \frac{\text{temporary storage}}{\Delta t}$ $e = 611 \exp \left[\frac{17.27 * T_{d}}{237.3 + T_{d}} \right] \qquad e_{s} = 611 \exp \left[\frac{17.27 * T}{237.3 + T} \right] \qquad q_{v} = 0.622 \frac{e}{P} \qquad RH = \frac{e}{e_{s}} \qquad \rho_{a} = \frac{P}{R_{a}T}$ $Runoff \ Depth = \frac{V_{DRH}}{A} \qquad K > \Delta t > 2KX$	$T_{\mathcal{I}} = C_t \left(\frac{L \times L_c}{\sqrt{S}}\right)^{0.56}$ $\frac{V_t}{V_{50}} = 0.376 \ln\left(\frac{t}{3.5}\right)$	$Q = K \times h_{\text{overflow}}^{\frac{1}{2}}$	$\times h_{\text{excellow}}^{\frac{1}{2}} \qquad K = \frac{2}{1+x}$		
$e = 611 \exp\left[\frac{17.27 * T_d}{237.3 + T_d}\right] e_s = 611 \exp\left[\frac{17.27 * T}{237.3 + T}\right] q_v = 0.622 \frac{e}{P} RH = \frac{e}{e_s} \rho_a = \frac{P}{R_a T_a}$ $Runoff \ Depth = \frac{V_{DRH}}{A} \qquad K > \Delta t > 2KX$	$P_{t,T} = 1.13(0.41 + 0.64 \ln T)(-0.11 - 0.27 \ln t)($	$0.79M^{0.69}R^{0.2}) A = a^{\frac{1}{b-1}}$	× (b + 1	$\frac{b}{b-1} \times S^{\frac{b}{b-1}}$	
$e = 611 \exp\left[\frac{17.27 * T_d}{237.3 + T_d}\right] e_s = 611 \exp\left[\frac{17.27 * T}{237.3 + T}\right] q_v = 0.622 \frac{e}{P} RH = \frac{e}{e_s} \rho_a = \frac{P}{R_a T_b}$ $Runoff \ Depth = \frac{V_{DRH}}{A} \qquad K > \Delta t > 2KX$	$C_T = \frac{C_2}{100} + \left(\frac{Y_T}{2.33}\right) \left(\frac{C_{100}}{100} - \frac{C_2}{100}\right) p = 1 T$	$G = \frac{\text{outflow}}{2} + \frac{\text{tempora}}{2}$	ary stor Δt	age	
$A = K > \Delta t > 2KX$	$e = 611 \exp\left[\frac{17.27 * T_d}{237.3 + T_d}\right]$ $e_s = 611 \exp\left[\frac{17}{23}\right]$				$\rho_a = \frac{P}{R_a T}$
$\frac{\Delta t}{2(1-X)} \le K \le \frac{\Delta t}{2X} \qquad K = \frac{\Delta L}{C} \qquad K_t = R_t - Q_t + K_{t-1} \text{ if } R_t - Q_t + K_{t-1} \ge 0$	$Runoff Depth = \frac{V_{DRH}}{A} \qquad K > \Delta t > 2$	KX			u
$A_{i} = K_{i-1} R_{i} - Q_{i} + K_{i-1} < 0$	$\frac{\Delta t}{2(1-X)} \le K \le \frac{\Delta t}{2X} \qquad K = \frac{\Delta L}{c} \qquad K_{t} = R_{t-1}$	$-Q_{t} + K_{t-1} \text{ if } R_{t} - Q_{t} + R_{t-1} + R_{t} - Q_{t} + R_{t-1} < 0$	$K_{\prime-1} \geq 0$)	

FORMULA SHEET

Open Channel Flow

					cheek
$v = \frac{K_u}{n} R^{2/3} S^{1/2}$	$h_f = \frac{f.L}{D} \frac{V}{2g}$	$\frac{2}{g}$ R	$e = \frac{\rho vL}{\mu}$	$v = C\sqrt{R}$	$h_f = S_o L$
$\tau_o = \rho g R S_o$	$F_r = \frac{v}{\sqrt{gh}}$		$S_o = S_w =$		$Q = A_1 v_1 = A_2 v_2$
$Q = \sum_{i=1}^{n} V_i A_i$	$V_i = \frac{1}{n_i} S^{1/2} \bigg($. ,	$v = \frac{K_u}{n}$	The state of the s	$n = 0.13 \frac{d^{1/6}}{g^{0.5}}$
$H_j = (y_2 - y_1)$	$H = Z + y + \frac{\alpha v^2}{2g}$		$E_1 = E_2 + \Delta z$		$\Delta E = \frac{(y_2 - y_1)^3}{4y_1 y_2}$
$y_c = \left(\frac{q^2}{g}\right)^{1/3}$			$y_c = \left(\frac{q^2}{g}\right)$	1	$\mathcal{L} = \sqrt{gy_1}$
$\alpha = \frac{\int u^3 dA}{\overline{V}^3 A} = \frac{V_1^3 A_1}{\overline{V}^3}$	$\frac{+V_{1}^{3}A_{1}+V_{3}^{3}A_{3}}{A_{1}+A_{2}+A_{3}}$	$v_w = $	$\frac{gy_2}{2y_1}[(y_2 +$	v_1)] + v_1	$h = \left(\frac{fL}{D}\right) \frac{V^2}{2g}$
$\frac{y_2}{y_1} = \frac{1}{2} \left[\sqrt{1 + 8F_{r,1}^2} \right]$	$H_j = 5$ to $7*(y_2 - y_1)$			$v_w = \sqrt{\frac{gy_2}{2y_1}[(y_2 + y_1)] + v_1}$	
$H_j = 5 to \ 7*(y)$	$(y_2 - y_1)$	$\overline{V} = \frac{Q}{A} = \frac{V_1 A_1 + V_2 A_1 + V_3 A_3}{A_1 + A_2 + A_3}$			$K = \frac{1}{n} A R^{\frac{3}{3}} = \frac{1}{n} \frac{A^{\frac{5}{7}}}{P^{\frac{3}{3}}}$