faculty of science

	Examiner	Moderator
Paper 1 30 marks		
Paper 2 70 marks		
EM/100		

	Examiner	Moderator
SM		
EM		
FM		

DATE:
ASSESSOR:
MODERATOR:
DURATION: 3 HOURS

SESSION:

MRS E KIRCHNER
MRS Q VAN DER HOFF
FULL MARKS: 100

SURNAME AND INITIALS	
STUDENT NUMBER	
CONTACT NUMBER	
LECTURER	

NUMBER OF PAGES:

REQUIREMENTS:

16 PAGES

MATHEMATICS INFORMATION BOOKLET

Instructions:

- Please fill in your particulars on the front page.
- Answer all the questions in the space provided.
- Do not write in pencil. Pencil will not be marked.
- You may use the back of each page (i.e. the left-hand side) for rough work OR to complete a question.
- Please indicate rough work as such.
- Rough work will not be marked.
- One non programmable calculator is permitted.
- Information booklets may be used.
- PLEASE CHECK THAT YOU HAVE RECEIVED 16 PAGES.

QUESTION 1

1.1 Determine the following:
$L\left\{e^{t-3}(t+3) H(t-3)\right\}$

1.2 Use the Laplace transform to solve the given differential equations, subject to the indicated initial conditions:
1.2.1 $y^{\prime \prime}-2 y^{\prime}+10 y=10 \quad y(0)=0 \quad ; y^{\prime}(0)=1$

$\begin{array}{ll}\text { 1.2.2 } & x^{\prime \prime}+9 x=\cos 3 t-\cos 3(t-\pi) H(t-\pi) \\ & x(0)=0 \text { and } x^{\prime}(0)=1\end{array}$

1.3 It is given that $y^{\prime}+0,2 y=f(t)$, where $f(t)=\left\{\begin{array}{lr}8 & 0 \leq t<1 \\ 0 & t \geq 1\end{array}\right.$
1.3.1 Rewrite the function $f(t)$ above in terms of Heaviside functions.
1.3.2 Use the Laplace transform to solve the given differential equation if $y(0)=0$

QUESTION 2

2.1 A particle is attached to a spring dashpot mechanism. At time $t=0$, when the particle is at rest, an external force e^{-t} is applied to the system. At time $t=2$, an additional force $f(t)$ of very short duration is applied to the particle.
The model for this system is represented by the differential equation:
$\frac{d^{2} y}{d t^{2}}+2 \frac{d y}{d t}+y=e^{-t}+3 \delta(t-2)$
Use the Laplace transform to find the position (y) of the particle at any time t if $y(0)=0$ and $y^{\prime}(0)=0$.

2.2 Given: $f(t)=t-t H(t-2)+(t-3) H(t-3)$

Sketch the graph of $f(t)$ for $t \geq 0$.

QUESTION 3

Find the general solution of the following differential equations, using D-operator methods.
$3.1\left(D^{2}+2 D+1\right) y=18-10 e^{-x}$

$3.3 \frac{d^{2} x}{d t^{2}}+\frac{1}{4} x=2 \sin \frac{1}{2} t$

$3.4\left(D^{2}-3 D+2\right) x=24 t e^{-t}$

QUESTION 4

4.1 The motion of a certain forced spring-mass system is modelled by the following differential equation:
$x^{\prime \prime}+\frac{1}{8} x^{\prime}+x=8 \cos 3 t$
4.1.1 Use \mathbf{D} - operator methods to determine the position (x) of the mass at any time t.
4.1.2 Use your answer in 4.1.1 to discuss the progress of the motion when $t \rightarrow \infty$.
4.1.3 Express the steady state of the solution in the form $x=R \sin (\omega t \pm \alpha)$.

4.2 Given the following system of simultaneous differential equations:

$$
\begin{align*}
& \frac{d i_{1}}{d t}=3 i_{1}-i_{2}-1 \\
& \frac{d i_{2}}{d t}=i_{2}+i_{1}+4 e^{t} \tag{9}
\end{align*}
$$

Use D - operator methods to solve for i_{2} ONLY.

QUESTION 5

5.1 Find the Fourier expansion of the ODD function $f(x)$ given below:

$$
f(x)=\left\{\begin{array}{cr}
x-3 & -2 \leq x<0 \tag{8}\\
x+3 & 0 \leq x \leq 2
\end{array} \quad[f(x)=f(x+4)]\right.
$$

5.2 Determine a half range Fourier cosine series to represent the function $f(t)=2$ sint $\cos t(0 \leq t \leq \pi)$.
It is given that $a_{0}=0$ and $f(t)=f(t+2 \pi)$.
\qquad
[16]

