

FACULTY OF SCIENCE

	DEPARTMENT OF PURE AND	APPLIED MATHEMATICS		
MODULE	MAT2B20 LINEAR ALGEBRA B			
CAMPUS	APK			
EXAM	NOVEMBER EXAM			
DATE	13/11/2014	SESSION 12:30 - 15:30		
ASSESSORS		DR G BRAATVEDT MS C MARAIS		
INTERNAL M	ODERATOR	MR G VAN DRIMMELEN		
DURATION	2 HOURS	MARKS 60		
SURNAME ANI	O INITIALS:			
STUDENT NUMBER:				
CONTACT NR:				
NUMBER OF PAGES: 1 + 12 PAGES				

1. ANSWER ALL THE QUESTIONS ON THE PAPER IN PEN.

3. SHOW ALL CALCULATIONS AND MOTIVATE ALL ANSWERS.

2. NO CALCULATORS ARE ALLOWED.

4. GOOD LUCK - WE HOPE YOU WRITE WELL :)

INSTRUCTIONS:

$\frac{\text{Question 1}}{\text{Let } A = \begin{bmatrix} -1 & 0 & 1 \\ 3 & 0 & -3 \\ 1 & 0 & -1 \end{bmatrix}}$ [6]

(a) Determine the eigenvalues of A. (3)

(b) Determine which of the following are eigenvectors of A:

$$(0,2,0), (3,1,1), (-1,3,1), (1,0,1)$$

(2)

(c) Hence, set up a matrix product representing A^{13} (you need not simplify). (1)

Question 2 [4]

 $\overline{\text{Consider } P_1}$ equipped with the evaluation inner product:

$$\langle \overline{p}, \overline{q} \rangle = p(-1)q(-1) + p(1)q(1)$$

for $\overline{p}, \overline{q} \in P_1$.

(a) Determine
$$d(1+2x,x)$$
.

(b) For which value(s) of s and t will the inner product

$$\langle \overline{p}, \overline{q} \rangle = p(s)q(s) + p(t)q(t)$$

coincide with the inner product

$$\langle \overline{p}, \overline{q} \rangle = a_0 b_0 + a_1 b_1$$

where
$$p(x) = a_0 + a_1 x$$
, $q(x) = b_0 + b_1 x$. (2)

Quest	tion 3	[6
(a)	Prove that if W is a subspace of an inner product space V , then W^{\perp} is a subspace of V .	(3)
(b)	State the Projection Theorem.	(2)
(c)	Give a condition on a matrix A under which it will have a QR factorization.	(1)

Question 4 [5]

Let W = span((1, 1, 1), (0, 1, 0)), and $\overline{b} = (1, 2, 2)$.

(a) Determine $\operatorname{proj}_{W^{\perp}}\overline{b}$.

(b) Hence, determine a least squares solution to the system:

 $\begin{array}{cccc}
x & & = & 1 \\
x & + & y & = & 2 \\
x & & = & 2
\end{array}$

(2)

- Question 5 Suppose that $A = \begin{bmatrix} 6 & -3 & -3 \\ -3 & 6 & -3 \\ -3 & -3 & 6 \end{bmatrix}$ and the characteristic polynomial for A is $-\lambda(\lambda-9)^2$.
 - (a) Determine an orthogonal basis for \mathbb{R}^3 consisting of eigenvectors of A. (4)

(b) Hence, calculate P and D that orthogonally diagonalize A. (2)

(c) Determine a symmetric matrix B such that $B^2 = A$. (2)

Question 6	[4]
Consider the quadratic form $3x_1^2 + 5x_2^2 + 6x_3^2 + 4x_4^2 = 2x_1x_3 = 2x_2x_4 - x_3x_4$.	

(a) Write the quadratic form in matrix form $\overline{x}^T A \overline{x}$. (1)

(b) Determine whether the quadratic form is positive definite, negative definite, or indefinite. (2)

(c) Hence, is the A obtained in (a), invertible? Explain. (1)

Question 7 Let $T: P_2 \to M_{22}$ be the linear transformation defined by [6]

$$T(\overline{p}) = \begin{bmatrix} p(1) - p(0) & p(2) - p(0) \\ p(-1) - p(0) & p(-2) - p(0) \end{bmatrix}$$

(a) Let
$$B = \{1, x, x^2\}$$
 and $C = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\}$. Determine the matrix representation of T relative to B and C .

(b) Hence, calculate
$$[T(1+2x+x^2)]_C$$
. (2)

Question 8 [6]

(a) Prove that if A is orthogonally diagonalizable, then A is symmetric.

(2)

(b) Let $T: V \to W$ be a linear transformation. Prove that T is one-to-one if and only if $\ker(T) = \{\overline{0}\}$. Question 9 Let $T: M_{22} \to P_2$ be the transformation defined by [10]

$$T\left(\begin{bmatrix} a & b \\ c & d \end{bmatrix}\right) \equiv (a+b) + (b-c)x + (d-c)x^2$$

(a) Show that
$$T$$
 is linear. (3)

(b) If
$$S: P_2 \to \mathbb{R}^2$$
 is defined by
$$S(a+bx+cx^2) = (b,c),$$
 determine $S \circ T$ explicitly. (2)

Question 10

Let V be the space of skew-symmetric $[A = -A^T]$ 3×3 matrices. Identify a subspace of \mathbb{R}^{∞} [the space of all real-valued sequences] to which V is isomorphic.

[3]

Question 11 Let A be an $n \times n$ orthogonal matrix. Show that the eigenvalues of A are either 1 or -1.