

FACULTY OF SCIENCE

DEPARTMENT OF APPLIED PHYSICS AND ENGINEERING MATHEMATICS

MODULE PHYSICS I FWFJA14

CAMPUS DFC

NOVEMBER EXAMINATION 2014

DATE: 10/11/2014 SESSION: 08:30 - 11:30

ASSESSOR DR S.P. BVUMBI

INTERNAL MODERATOR MR T.G. MATHE

DURATION: 3 HOURS MARKS: 115

NUMBER OF PAGES: 12 PAGES INCLUDING FORMULA SHEET

INSTRUCTIONS

Answer all the questions.

Calculators are permitted.

Answer SECTION A on UJ multiple choice grid provided.

Answer SECTION B in the answer book provided.

SECTION A

- 1. A car accelerates at 2 m s⁻². Assuming the car starts from rest, how much time does it need to accelerate to a speed of 20 m s⁻¹?
 - A. 2 seconds
 - B. 10 seconds
 - C. 20 seconds
 - D. 40 seconds
 - E. none of the above
- 2. A freely falling object starts from rest. After falling for 6 seconds, it will have a speed of
 - A. 6 m s^{-1}
 - B. 30 m s^{-1}
 - C. 60 m s^{-1}
 - D. 300 m s⁻¹
 - E. more than 300 m s⁻¹
- 3. How far will a brick starting from rest fall freely in 3.0 seconds?
 - A. 15 m
 - B. 29 m
 - C. 44 m
 - D. 88 m
- 4. If the tension in the line joining the two masses shown below is 12 N, what is the mass, m_1 ? Ignore surface friction.

- A. 1.1 kg
- B. 1.4 kg
- C. 2.0 kg
- D. 10 kg

- 5. A 100 W light bulb is left on for 10.0 hours. Over this period of time, how much energy was used by the bulb?
 - A. 1 000 J
 - B. 3 600 J
 - C. 3 600 000 J
 - D. 1.34 hp
- 6. How much work must be done to stop a 1 800 kg vehicle travelling at 30 m s⁻¹?
 - A. $1.8 \times 10^4 \text{ J}$
 - B. $5.4 \times 10^4 \text{ J}$
 - C. $5.3 \times 10^5 \text{ J}$
 - D. $8.1 \times 10^5 \text{ J}$
- 7. Pascal's principle states that when a force is applied to a confined fluid, the change in pressure is transmitted
 - A. only to the area where the pressure is applied
 - B. equally to all parts of the fluid
 - C. to any weakness in the fluid's container
 - D. in the direction of the buoyant force
- 8. How much pressure do you experience when you balance a 5 kg ball on the tip of your finger, which has an area of 1 cm²?
 - A. 490 kPa
 - B. 590 kPa
 - C. 690 kPa
 - D. 790 kPa
- 9. A 500 N weight sits on the small piston of a hydraulic machine. The small piston has an area of 2 cm². If the large piston has an area of 40 cm², how much weight can the large piston support?
 - A. 25 N
 - B. 500 N
 - C. 10000 N
 - D. 40000 N

- 10. A liquid has a relative density of 0.357. What is its density?
 - A. 357 kg/m^3
 - B. 643 kg/m^3
 - C. 1000 kg/m^3
 - D. 3570 kg/m³
- 11. The mass of a relative density bottle is 1.5 kg when empty, 24 kg when filled with water and 30 kg when filled with glycerine. Determine the relative density of glycerine.
 - A. 1.27
 - B. 2.27
 - C. 3.27
 - D. 1.47
- 12. A 15 000 N car on a hydraulic lift rests on a cylinder with a piston of radius 0.20 m. If a connecting cylinder with a piston of 0.040 m radius is driven by compressed air, what force must be applied to this smaller piston in order to lift the car?
 - A. 600 N
 - B. 1500 N
 - C. 3 000 N
 - D. 15 000 N
- 13. If the column of mercury in a barometer stands at 72.6 cm, what is the atmospheric pressure? (The density of mercury is 13.6×10^3 kg/m³ and g = 9.80 m/s²)
 - A. $0.968 \times 10^5 \, \text{Pa}$
 - B. $1.03 \times 10^5 \, \text{Pa}$
 - C. $0.925 \times 10^5 \, \text{Pa}$
 - D. $1.07 \times 10^5 \, \text{Pa}$

14. Determine the current through resistor R₂ in the circuit shown below.

- A. 1.5 A
- B. 2.5 A
- C. 3.5 A
- D. 5.0 A

15. The diagram below shows part of an electric circuit. What is the current through resistor R_1 ?

- A. 1.0 A
- B. 1.4 A
- C. 1.6 A
- D. 3.0 A

16. In which of the two circuits shown below, is the bulb brighter?

- A. Left picture
- B. Right picture
- C. Both the same
- D. Need more information
- 17. How much power is used by a 12.0 V car battery that draws 0.5 A of current?
 - A. 0.5 W
 - B. 6 W
 - C. 12 W
 - D. 24 W
 - E. 30 W
- 18. When plugged into a 120 V wall outlet, how much current is used by an electric blanket rated at 140 W?
 - A. 16 800 A
 - B. 140 A
 - C. 120 A
 - D. 1.2 A
- 19. A steel wire, 150 m long at 10° C, has a coefficient of linear expansion of 11×10^{-6} /C°. Calculate its change in length as the temperature changes from 10° C to 45° C.
 - A. 0.65 cm
 - B. 1.8 cm
 - C. 5.8 cm
 - D. 12 cm

- 20. An object is situated between a concave mirror's surface and its focal point. The image formed in this case is
 - A. virtual and erect
 - B. real and inverted
 - C. real and erect
 - D. virtual and inverted

 $[20 \times 2 = 40]$

SECTION B

QUESTION 1

1.1 Define the following:

1.2 A force $F_1 = 5$ N is applied to a block in a horizontal direction. A second force $F_2 = 4$ N is applied to the object at angle of 30^0 above the horizontal as shown in the diagram below. Determine the magnitude and direction of the resultant force acting on the block. (6)

1.3	A motorist undergoes a displacement of 250 km in a direction 30 ° north of east. Resolve this displacement into components in directions north and east.		(4) [14]
QUE	STION	<u>2</u>	
2.1	Define the following:		
	2.1.1 2.1.2	Acceleration Speed	(2) (2)
2.2	A body with initial velocity 8 m s ⁻¹ moves with a constant acceleration and travels 640 m in 40 s. Calculate:		
	2.2.1	The average velocity during the 40 s interval	(3)
	2.2.2	The final velocity	(3)
	2.2.3	The acceleration	(4) [14]
QUE	STION	<u>3</u>	
3.1	State two differences between weight and mass.		(2)
3.2	State Newton's second law of motion		(2)
3.3	What constant unbalanced force acting on a body, 30 kg, will:		
		3.3.1 give it an acceleration of 3 cm s ⁻² ?	(3)
		3.3.2 give it a speed of 8 m s ⁻¹ in 6 s from rest?	(3)
		3.3.3 change its speed from 20 m s ⁻¹ to 10 m s ⁻¹ in passing through a distance of 25 m?	(4) [14]

QUESTION 4

- 4.1 State Archimedes' principle. (2)
- 4.2 The mass of a marble in air is 30 g, in water 25 g and in alcohol 27g. Calculate the relative density of alcohol.

[06]

(4)

QUESTION 5

5.1 Calculate the total resistance of the circuit and the current through the $25.0~\Omega$ resistor in the circuit shown below. (6)

5.2 Determine the value of resistor R in circuit shown below.

Assume that the voltmeter and ammeter are perfect. (3)

[09]

QUESTION 6

State the Law of conservation of heat. (2)

A large block of ice at 0 °C has a hole drilled into it and 400 g of 6.2 aluminium pellets at a temperature of 30 °C are poured into the hole. How much (in grams) of the ice melts?

(4)

[06]

QUESTION 7

7.1 (2) State Boyle's Law

An enclosed gas has a volume of 100 cm³ when the pressure is 7.2 650 mm Hg. At what pressure (in mm Hg) will the volume be 125 cm³ if the temperature remains constant?

(4)

7.3 One way to cool a gas is to let it expand. Typically, a gas at 27 °C and a pressure of 40 atm might be expanded to atmospheric pressure and volume 13 times larger. Determine the new temperature (in °C) of the gas.

[12]

(6)