FAKULTEIT NATUURWETENSKAPPE FACULTY OF SCIENCE

DATE 11/11/2014
SESSION 08:30-11:30

ASSESSORS
INTERNAL MODERATOR

DURATION

DR M MOLELEKOA
PROF C M VILLET MARKS 50

NUMBER OF PAGES: 3 PAGES
INSTRUCTIONS: (1) ANSWER ALL 5 QUESTIONS
(2) CALCULATORS MAY BE USED IN WHICH CASE WRITE ANSWERS $C O R R E C T$ TO TWO DECIMAL PLACES
(3) SHOW ALL NECESSARY WORK

QUESTION 1 (Answer this question on a new page)
(1.1) Sketch the solution space of the following system of inequalities, showing all the important numbers and labels on the coordinate axes:
$3 x+y<3,-5 x+3 y \leq 15$ and $2 x-3 y>6$.
(1.2) A manufacturer makes two types of a certain product. Each working day he makes x units of type X and y units of type Y of the product. The time it takes him to make each product of type X is two-thirds of the time taken to make one of type Y. If only type Y of the product are made, the manufacturer can make up to thirty of them per day. Write down all the constraints that (x, y) must satisfy.

QUESTION 2 (Answer this question on a new page)
(2.1) Consider the following rectangular box with given dimensions and directions of \hat{x}, \hat{y} and \hat{z} :

(a) Determine the direction angles α, β and γ of $\overline{G A}$.
(b) Calculate $\angle E A G$.
(2.2) Consider a 3D $X Y Z$-reference system in which the positive Z-axis is directed upwards. Suppose a point P is 6 m above the $X Y$-plane, at an elevation angle of 30° from the origin O. Find the x-coordinate of P if $O P$ makes an angle of 122° with the positive X-axis. (5)
[HINT: First find how far P is from the origin.]

QUESTION 3 (Answer this question on a new page)
(3.1) Suppose $A B=B C$ in $\triangle A B C$. Use vector methods (only) to prove that $\angle C A B=\angle A C B$.
[HINT: You may use suitable choices of \bar{a} and \bar{b}.]
(3.2) Suppose $\bar{a}=8 \hat{x}-\hat{y}+4 \hat{z}$ and $\triangle A B C$ has vertices $A(3,1,1), B(-1,0,1)$ and $C(3,2,4)$. Calculate:
(a) the area of $\triangle A B C$ and
(b) the acute angle which \bar{a} makes with the plane of $\triangle A B C$.

QUESTION 4 (Answer this question on a new page)
(4.1) Solve for α if $\overline{P C}=\alpha \overline{P A}+(1-\alpha) \overline{P B}$ and B is a point of $A C$ such that $A B: B C$ is $5: 3$.
(4.2) Consider the following figure in which $A D: D B=2: 3, E G: G B=3: 4$, $A E: E C=1: 3, \overline{B D}=3 \bar{a}$ and $\overline{B G}=4 \bar{b}$.

(a) Express $\overline{A E}, \overline{A C}$ and $\overline{B C}$ i.t.o. \bar{a} and \bar{b}.
(b) Hence (or otherwise) show that $B F=F C$.
[HINT: Solve for $k=\frac{B F}{B C}$.]

QUESTION 5 (Answer this question on a new page)
(5.1) Let L be the line which passes through $P(4,1,-3)$, and which is parallel to $3 \hat{x}+2 \hat{y}+4 \hat{z}$. Find (a) the shortest distance from P to the Y-axis.
(b) the shortest distance between L and the Y-axis.
(5.2) Consider the plane π whose equation is $4 x-7 y+4 z=1$.
(a) Show that $A(1,1,1)$ is a point of π.
(b) Find how far the point $P(5,2,5)$ is from π.

Surname \& Initials: \qquad
Student number: \qquad
Signature: \qquad
Figure (1.2)

Figure (2.1)

Figure (2.2)

Figure (3.1)

Figure (4.1)

Figure (5.1)

Figure (5.2)

