

FACULTY OF SCIENCE FAKULTEIT NATUURWETENSKAPPE

DEPARTMENT OF MATHEMATICS

MODULE ASMA2A1 SEQUENCES, SERIES AND VECTOR CALCULUS CAMPUS APK NOVEMBER EXAM 2014 PURE EXAM **EXAMINER(S)** MR F SCHULZ* **INTERNAL MODERATOR** MRS C DUNCAN **DURATION** 2.5 HOURS **MARKS** 50 SURNAME AND INITIALS _____ STUDENT NUMBER ______ CONTACT NUMBER NUMBER OF PAGES: 1 + 12 INSTRUCTIONS: 1. ANSWER ALL QUESTIONS ON THE PAPER IN PEN 2. CALCULATORS ARE ALLOWED

3. INDICATE CLEARLY ANY ADDITIONAL WORKING OUT

 $\frac{\textbf{Question 1}}{\textbf{State the precise definition of a limit of a sequence}}.$

[3]

Question 2 Prove or disprove: If $\lim_{n\to\infty} a_n = 0$, then $\sum a_n$ is convergent.

[2]

 $\frac{\textbf{Question 3}}{\textbf{Find the sum of the following series:}}$

$$\sum_{n=0}^{\infty} \frac{n}{(n+1)!}$$

[4]

Question 4
Test the following series for convergence or divergence: [8]

$$(4.1) \sum_{n=0}^{\infty} \frac{e^n}{n^2}$$
 (2)

$$(4.2) \sum_{n=1}^{\infty} \left(\sqrt[n]{2} - 1 \right)^n \tag{3}$$

 $(4.3) \sum_{n=1}^{\infty} \frac{\cos 2n}{1+n^2}$

(3)

 $\frac{\textbf{Question 5}}{\textbf{State and prove the Root Test. You do not have to show that it is inconclusive when } L=1.$ [6]

 $\frac{\textbf{Question 6}}{\textbf{Find the sum of the following series:}}$

$$-e + \frac{e^2}{2!} - \frac{e^3}{3!} + \frac{e^4}{4!} - \cdots$$

[3]

6

Question 7 Let $\sum b_n$ be an absolutely convergent series and suppose that the sequence $\{a_n\}$ is bounded. Prove that $\sum a_n b_n$ converges.

Question 8

Two particles travel along the space curves

$$\mathbf{r}_1 = \left\langle t, t^2, 4 \cdot 3^t \right
angle$$

and

$$\mathbf{r_2} = \left\langle t^2 - 12, 16, t \cdot 3^t \right\rangle.$$

Will these two particles collide? Show all working.

[2]

Question 9

Determine $\mathbf{r}(t)$ if

$$\mathbf{r}'(t) = \left\langle rac{t \ln{(1+t^2)}}{1+t^2}, e^{2t}, \sin{2t}
ight
angle$$

and r(0) = (1, 0, 0).

[4]

Question 10

Reparametrize the following curve with respect to arc length measured from the point where t = 0 in the direction of increasing t:

$$\mathbf{r}(t) = e^t \sin t \, \mathbf{i} + e^t \, \mathbf{j} + e^t \cos t \, \mathbf{k}.$$

 $\frac{\text{Question } 11}{\text{If } \mathbf{r}(t) \neq \mathbf{0}, \text{ show that}}$

$$rac{d}{dt}\left|\mathbf{r}(t)
ight|=rac{1}{\left|\mathbf{r}(t)
ight|}\mathbf{r}(t)\cdot\mathbf{r}'(t).$$

Question 12 Prove that the curvature of a curve C with vector function $\mathbf{r}(t)$ is given by the following formula:[4]

$$\kappa(t) = \frac{|\mathbf{r}'(t) \times \mathbf{r}''(t)|}{|\mathbf{r}'(t)|^3}.$$

 $\frac{\textbf{Question 13}}{\textbf{Find the normal component of the acceleration vector if the position vector is given by}$

$$\mathbf{r}(t) = t\,\mathbf{i} + t^2\mathbf{j} + 3t\,\mathbf{k}.$$

[4]