

FACULTY OF SCIENCE FAKULTEIT NATUURWETENSKAPPE

DEPARTMENT OF MATHEMATICS		
MODULE	ASMA2A1 SEQUENCES, SERIES AND VECTOR CALCULUS	
CAMPUS	APK	
SPECIAL EXAM	JANUARY 2015	Pare
EXAMINER(S)		MR F SCHULZ*
INTERNAL MODERATOR		MRS C DUNCAN
DURATION		2.5 HOURS
MARKS		50
SURNAME AND INITIALS		
STUDENT NUMBER		
CONTACT NUMBER		
NUMBER OF PAGES:	1 + 12	
INSTRUCTIONS:	1. ANSWER ALL QUESTIONS ON THE PAPER IN PEN 2. CALCULATORS ARE ALLOWED 3. INDICATE CLEARLY ANY ADDITIONAL WORKING OUT	

ASOUAZAIO Nou Pure Spec exam Pure

Question 1

State the precise definition of a limit of a sequence.

[3]

Question 2 Prove or disprove: If $\lim_{n\to\infty} a_n = 0$, then $\sum a_n$ is convergent.

[2]

 $\frac{\textbf{Question 3}}{\textbf{Find the sum of the following series:}}$

$$\sum_{n=0}^{\infty} \frac{n}{(n+1)!}.$$

[4]

 $\frac{\textbf{Question 4}}{\textbf{Test the following series for convergence or divergence:}}$ [8]

$$(4.1) \sum_{n=0}^{\infty} \frac{e^n}{n^2}$$
 (2)

$$(4.2) \sum_{n=1}^{\infty} \left(\sqrt[n]{2} - 1\right)^n \tag{3}$$

 $(4.3) \sum_{n=1}^{\infty} \frac{\cos 2n}{1+n^2}$

Question 5 State and prove the Root Test. You do not have to show that it is inconclusive when L=1.

 $\frac{\textbf{Question 6}}{\textbf{Find the sum of the following series:}}$

$$-e + \frac{e^2}{2!} - \frac{e^3}{3!} + \frac{e^4}{4!} - \cdots$$

[3]

6

Question 7 Let $\sum b_n$ be an absolutely convergent series and suppose that the sequence $\{a_n\}$ is bounded. Prove that $\sum a_n b_n$ converges.

Question 8

Two particles travel along the space curves

$$\mathbf{r}_1 = \left\langle t, t^2, 4 \cdot 3^t \right\rangle$$

and

$$\mathbf{r}_2 = \left\langle t^2 - 12, 16, t \cdot 3^t \right
angle$$
 .

Will these two particles collide? Show all working.

[2]

Question 9

Determine $\mathbf{r}(t)$ if

$$\mathbf{r}'(t) = \left\langle rac{t \ln{(1+t^2)}}{1+t^2}, e^{2t}, \sin{2t}
ight
angle$$

and $r(0) = \langle 1, 0, 0 \rangle$. [4]

 $\frac{\textbf{Question 11}}{\text{If } \mathbf{r}(t) \neq \mathbf{0}, \text{ show that}}$

$$rac{d}{dt}\left|\mathbf{r}(t)
ight|=rac{1}{\left|\mathbf{r}(t)
ight|}\mathbf{r}(t)\cdot\mathbf{r}'(t).$$

Question 13
Find the normal component of the acceleration vector if the position vector is given by

ecceleration vector if the position vector is given by
$$\mathbf{r}(t) = t \, \mathbf{i} + t^2 \mathbf{j} + 3t \, \mathbf{k}. \tag{4}$$