

PROGRAM

: BACCALAUREUS TECHNOLOGIAE

EXRACTION METALLURGY

SUBJECT

: FERROUS METALLURGY 4

CODE

: MFM41-1

DATE

: WINTER EXAMINATION 2014

09 JUNE 2014

DURATION

: (SESSION 1) 08:30 - 11:30

WEIGHT

: 40:60

TOTAL MARKS

: 100

EXAMINER

: DR S BHERO

MODERATOR

: MS N NAUDE

5148

NUMBER OF PAGES 4 PAGES

INSTRUCTIONS : ANSWER ALL QUESTIONS

REQUIREMENTS

: CALCULATOR

QUESTION 1	(30	marks)
-------------------	-----	--------

1.1 Explain why the following are important for the blast furnace charge.	
(a) Optimum particle size.	(2)
(b) Optimum particle size distribution.	(2)
(c) Blending ores from various mines.	(2)
(d) Ore dressing to raise the grade from 54% iron to 62%	(2)
1.2 What are the causes of the following conditions and how are they corrected?	
(a) Too high silicon in hot metal.	(2)
(b) Too high sulphur content in hot metal.	(2)
(c) $H_2/H_2O = 2:1$ and $CO/CO_2 = 2:1$.	(2)
(d) Slag does not flow easily making tapping difficult.	(2)
1.3 Explain why three stoves are necessary to serve one furnace.	(4)
1.4 Say whether the following statements are correct or incorrect and give reasons for your a	nswer.
(a) Lumps blocking the slag tap hole are likely to be oversize limestone particles.	(2)
(b) The shape of the furnace is designed to accommodate the expansion of the charge do	wn the stack
and formation of liquid in the hearth.	(2)
(c) Steam increases temperature in the blast furnace because of H ₂ and CO produced.	(2)
1.5 Using thermodynamic data below determine thermal range for $MnO + C = Mn + CO$ and	indicate giving
reasons this reaction predominant	(4)

QUESTION 2 (40 marks)

Data obtained from an integrated iron and steel works were as follows:

Top gas analysis %	CO	CO ₂	H ₂	H ₂ O	N ₂	O ₂
Blast furnace	21	21	3	3	50	2
BOF (LD vessel)	28	3			3	66

Slag analysis %	CaO	SiO ₂	Al ₂ O ₃	MgO	FeO/Fe ₂ O ₃	S	P
Blast furnace	36	30	10	9	3	2	
BOF (LD vessel)	50	20	0.5	10	20	0.2	1.2

Metal analysis %	C	Si	Mn	S	P	Tapping T ^o
Blast furnace	3.8	0.9	0.8	0.07	0.2	1450°C
BOF (LD vessel)	0.06		0.2	0.04	0.02	1650°C

2.1	Comment th	e following	differences	in the top	gas composi	ition of blast	t furnace and LD):
-----	------------	-------------	-------------	------------	-------------	----------------	------------------	----

(a)	Carbon monoxide and carbon dioxide contents.	(3)
-----	--	-----

2.2 With reference to slag analyses:

2.3 With reference to hot metal and blown metal analyses:

2.4 Are the following suggestions by the metallurgists correct? Explain briefly.

(f) After blowing for 15 minutes, the phosphorus content being 0.1%, the "carbon catch" may be employed to increase rate of production.

QUESTION 3 (30 marks)

- 3.1 A 50 tonne ladle of hot metal from mixer has a layer of 2 tonnes of slag on top of liquid iron. The hot metal contains 0.9% Si. If slag contains 36% CaO, 9% MgO, 33% SiO₂ and 12% Al₂O₃. Given that atomic weights of silicon and oxygen are 28 and 16 respectively;
 - (a) Calculate the lime to be added to achieve a basicity of 3 if lime is 86% pure.

(5)

(b) What could have reduced the reactivity of lime?

(4)

Size of particles may not be optimum

Clinker formed during calcining reducing reactivity of lime

Lime incompletely calcined .

Hydration of CaO to slaked lime reduces reactivity of CaO

(c) Apart from the reasons in (b), why would more lime than calculated be added?

(3)

- 3.2 The turndown analysis gives the composition of the metal after blowing in a 50 ton LD.
 - (a) If the turndown manganese is 0.25%, calculate the ferromanganese addition required to make a steel grade with 0.8% Mn if ferromanganese contains 78% Mn. (3)
 - (b) If after 15 minutes blow, the "carbon catch" procedure was followed giving 0.5% Mn at turndown, calculate the saving made and discuss the overall benefits.
 - (c) If ferromanganese costs R12000 per ton, calculate the cost saving made in a day by employing the carbon catch procedure if production cycle is 45 minutes per blow. (4)
- 3.3 Why is it necessary to avoid the following:
 - (a) Desulphurising after blowing.

(2)

(b) Carrying over LD slag into casting ladles.

(2)

(c) Pouring liquid steel on pools of water.

(2)

(d) Vessel slopping.

(2)

Thermodynamic Data

$$C + \frac{1}{2}O_2 = CO_{(g)}$$

$$\Delta G^{o} = -111700 - 88T$$

$$C + O_2 = CO_{2(g)}$$

$$\Delta G^{\circ} = -394100 - 0.8T$$

$$Mn + \frac{1}{2}O_2 = MnO$$

$$\Delta G^{o} = -403000 + 90T$$