

PROGRAM

NATIONAL DIPLOMA

ENGINEERING: COMPUTER SYSTEMS

ENGINEERING: ELECTRICAL

SUBJECT

: ELECTRICAL ENGINEERING 1

ELECTROTECHNOLOGY 1

CODE

AEI1221 / ELT1111

DATE

: WINTER EXAMINATION 2014

19 JUNE 2013

DURATION

: (SESSION 2) 12:30 - 15:30

WEIGHT

: 40:60

TOTAL MARKS

: 101

ASSESSOR

: MR PR WILSON

MODERATOR

: DR DE JAGER

2014

NUMBER OF PAGES : 5 PAGES

INSTRUCTIONS

- 1. ANSWER ALL QUESTIONS
- 2. 1 MARK = 1%
- 3. CALCULATORS ARE PERMITTED

OUESTION 1

An electric geyser is required to heat 150 litres of water from 22°C to 60°C. The geyser has a 2kw element and an overall efficiency of 85%. If the cost of electricity is R1.15 per kwh determine the cost involved and the time taken to heat the water. Note. The specific heat capacity of water is 4190 J/kg

[8]

OUESTION 2

Using the superposition theorem determine the current through the 8Ω resisitor.

2.2 By conducting a Star to Delta transformation on Star ABC calculate the total current.

(11)

2.3 Determine the Thevenin and Norton equivalent of the circuit below.

(10)

[38]

QUESTION 3

Calculate the efficiency of the D.C. distribution system if the copper has a diameter of 1.25mm and ρ of 0.017 $\mu\Omega$ m.

[16]

QUESTION 4

Calculate the current required to setup a flux density of 0.8 Tesla in the airgap.

Section	Length	Area	Material
Α	100mm	80mm ²	Cast Steel
В	50mm	40mm ²	Stalloy
C	50mm	40mm ²	Stalloy
Airgap	1mm	40mm ²	

[<u>16</u>]

QUESTION 5

A coil of 1000 turns is wound on a wooden torroidal former. The mean sectional area and length of the magnetic circuit is 20cm^2 and 100 mm respectively. The current in the inductor is has the wave form as shown below. Determine and plot the graph of the induced voltage.

12

QUESTION 6

If $V_{AB} = 10.96V$ determine the following:

- 6.1 The capacitance of the parallel section AB.
- 6.2 The voltage V_{BC} .
- 6.3 The energy stored in the circuit.

[10]