

FACULTY OF SCIENCEFAKULTEIT NATUURWETENSKAPPE

DEPARTMENT OF MATHEMATICS

MODULE ASMA2A1 SEQUENC		ES, SERIES AND VECTOR CALCULUS		
CAMPUS	APK			
EXAM	SUPPLEM	MENTARY EXAM 2014	Main	
EXAMINER(S)			r	MR F SCHULZ
INTERNAL MODERATOR			MRS C DUNCAN	
DURATION				2.5 HOURS
MARKS				50
SURNAME AND	INITIALS _		•.*	3
STUDENT NUM	BER			
CONTACT NUM	BER			
NUMBER OF P	PAGES:	1 + 12		
INSTRUCTIONS: 1. ANSWER ALL QUESTIONS ON THE PAPER IN PER 2. CALCULATORS ARE ALLOWED 3. INDICATE CLEARLY ANY ADDITIONAL WORKING				0

 $\frac{\textbf{Question 1}}{\textbf{Find all integers }k \textbf{ for which the sequence}}$

$$\left\{ (-k)^n \frac{1 \cdot 3 \cdot 5 \cdots (2n-1)}{(2n)^k \cdot (2n)!} \right\}_{n=1}^{\infty}$$

converges.

[5]

Question 2 Prove the following theorem: If $\sum_{n=1}^{\infty} a_n$ converges, then $\lim_{n\to\infty} a_n = 0$. [4]

 $\frac{\textbf{Question 3}}{\textbf{Test the following series}} \ \textbf{for convergence or divergence:}$

(3.1)
$$\sum_{n=0}^{\infty} \ln \left(\frac{n^2+3}{3n^2+1} \right)$$

$$(3.2) \sum_{n=1}^{\infty} (-1)^n \frac{n \ln n}{(n+1)^3 \cdot 2^n}$$
 (4)

$$(3.3) \sum_{n=1}^{\infty} \frac{2}{2n - n \cdot \cos^2 n} \tag{4}$$

Question 4

Suppose that $\sum c_n (x-2)^n$ converges when x=6 and diverges when x=-8. What can be said about the convergence or divergence of the following series?

(a)
$$\sum_{n=0}^{\infty} c_n (-3)^n$$

(b)
$$\sum_{n=0}^{\infty} c_n (11)^n$$

(a)
$$\sum_{n=0}^{\infty} c_n (-3)^n$$
 (b) $\sum_{n=0}^{\infty} c_n (11)^n$ (c) $\sum_{n=0}^{\infty} c_n (-4)^n$

 $\frac{\textbf{Question 5}}{\textbf{Find the Maclaurin series for }f \textbf{ and its radius of convergence:}}$

$$f(x) = (1 - 3x)^{-5}.$$

[4]

 $\frac{\textbf{Question 6}}{\textbf{Use series to evaluate the limit:}}$

$$\lim_{x\to 0}\frac{\cos x-1+\frac{x^2}{2}}{\arctan x-x}$$

[3]

7

Question 7 Find the curvature of the curve with parametric equations $x = 4\cos t$ and $y = 3\sin t$ at the points [4]

Question 8

Find the velocity, acceleration and speed of a particle with the given position function. Sketch the path of the particle and draw the velocity and acceleration vectors for the specified value of t:[5]

$$\mathbf{r}(t) = 2e^{t}\mathbf{i} + \frac{1}{2}e^{-t}\mathbf{j}$$
; $t = \ln 3$.

Question 9
A particle starts at the origin with initial velocity $\mathbf{i} - \mathbf{j} + 3\mathbf{k}$. Its acceleration is $\mathbf{a}(t) = 6t\mathbf{i} + 12t^3\mathbf{j} - 6t\mathbf{k}$. Find its position function. [4]

Question 10

If v is the speed of a particle along a curve C, T and N the unit tangent and unit normal vectors respectively of the particle's position vector \mathbf{r} , and κ is the curvature of C, then show that the acceleration \mathbf{a} of the particle is given by

$$\mathbf{a} = \mathbf{v}'\mathbf{T} + \kappa \mathbf{v}^2\mathbf{N}.$$

 $\frac{\mathbf{Question}\ 11}{\mathbf{Find}\ the\ vectors}\ \mathbf{T}\ and\ \mathbf{N}\ at\ the\ given\ point};$

 $\mathbf{r}(t) = \langle \sin t, \cos t, \ln \sin t \rangle$; $\langle 1, 0, 0 \rangle$

[4]