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1. This paper consists of four questions.
2. Answer all four questions.

3. This paper consists of five pages.




QUESTION 1

a) Determine the stability function R (hA) for the Runge-Kutta method

b) Show that the parabolic problem
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can be solved approximately by means of a system of ODEs, which has

Jacobian .J given by
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where h is an appropriate discretization parameter.

c) Assuming that the system in (b) is to be solved using Euler’s method, derive
a condition for stability in the numerical solution by imposing a suitable
condition on the Jacobian of the system.

HINT: Eigenvalues of an N x N tridiagonal matrix {b, a, c}
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QUESTION 2

a) Set up a linear system whose solution approximates the solution of
Vu (z,y) = 2y (1)

on
A={(myo<a<1, 0<y<2})

subject to the boundary conditions
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fori,7 =0,1,...,4. Make use of second-order approximations to the deriv-

atives in the PDE and in the boundary conditions.

b) If this linear system is solved, we find that the approximate solution at each
(r,y) € Ais, in fact, equal to the exact solution evaluated at each (z,y) € A.
Explain this given that the analytical solution of (1) is

u(z,y) =x+a%y.
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QUESTION 3

(a) Assume that the method
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is used to control the local error in Euler’s method, via local extrapolation,

for the initial-value problem

y' =y, y(2) =1
If a tolerance ¢ is placed on the local error, show that the appropriate stepsize

on the first step is given by
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You may assume h < 1.

(b) Show that, if y; > yo,y2 # 0, then the system
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has at least one stiff eigenvalue.
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QUESTION 4

Consider the equation
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a) Use the von Neumann ansatz
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to show that the Crank-Nicolson method applied to (2) is unconditionally

stable.

b) Show that the leading term of the local truncation error )" of Richardson’s
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