UNIVERSITY OF JOHANNESBURG

FACULTY OF SCIENCE

DEPARTMENT OF APPLIED MATHEMATICS	
MODULE	APM1B10
CAMPUS	INTRODUCTION TO DYNAMICS
	NOVEMBER EXAMINATION

DATE: 05/11/2014

ASSESSOR
INTERNAL MODERATOR

DURATION: $\quad 2 \frac{1}{2}$ HOURS

NUMBER OF PAGES: 4 PAGES

INSTRUCTIONS:

CALCULATORS MAY BE USED

ANSWER ALL THE QUESTIONS

SYMBOLS HAVE THEIR USUAL MEANING

PHYSICAL QUANTITIES ARE IN SI UNITS AND ANGLES ARE IN RADIANS

QUESTION 1

(a) Show that

$$
\widehat{r} \cdot \widehat{n}=\frac{v_{\theta} a_{n}}{v_{\theta} a_{r}-v_{r} a_{\theta}}
$$

(b) The equation of the trajectory of a particle is given by

$$
\mathbf{r}(t)=t^{3} \widehat{x}+\sin (2 t) \widehat{y} \equiv\left(t^{3}, \sin (2 t)\right)
$$

Find, for $t=\frac{1}{2}$,
(i) \mathbf{v} and \mathbf{a},
(ii) $\widehat{\tau}$ and \widehat{n},
(iii) the tangential and normal components of \mathbf{a},
(iv) and the radius of curvature ρ.

QUESTION 2

Calculate $\int_{\Gamma} \mathbf{a} \cdot d \mathbf{r}$ with $\mathbf{a}=\left(2 x y, x^{2}, 2 z\right)$, and where the path Γ is defined by

$$
\begin{aligned}
& y=2 x+1 \\
& z=x+y^{2} .
\end{aligned}
$$

In the integral, the lower limit is $(0,1,1)$, and the upper limit is $(1,3,10)$. You should find that the value of the integral is 102.

QUESTION 3

A force $\mathbf{F}=\left(F_{x}, F_{y}\right)$ acts on a particle, of mass 0.2 kg , for 2 seconds. Here, F_{x} and F_{y} are constants, not necessarily equal. Assume that \mathbf{F} makes an angle θ with the horizontal axis. Assume that the horizontal component of the initial velocity \mathbf{v}_{i} is half the vertical component. Assume that the final velocity \mathbf{v}_{f} has the same magnitude as \mathbf{v}_{i}, but is opposite in direction.
(a) Determine θ.
(b) If the horizontal component of \mathbf{v}_{i} is $20 \mathrm{~ms}^{-1}$ in the negative x-direction, determine F_{x} and F_{y}.

QUESTION 4

Calculate the directional derivative $\frac{\partial \psi}{\partial s}$ of

$$
\psi=y z-x^{2}
$$

in the direction

$$
\widehat{x}+2 \widehat{y}-3 \widehat{z}
$$

at the point

$$
(-2,1,0) .
$$

(a) Use the parameterization $\mathbf{r}=\mathbf{r}_{0}+s \widehat{s}$.
(b) Use $\nabla \psi$.

QUESTION 5

A bead of mass m slides along a smooth circular ring from A to B (Figure 1). Calculate the speed at B if the initial speed was v_{0}. The angle θ is defined in the figure. Gravity acts vertically downwards.

Figure 1

INFORMATION

$$
\begin{aligned}
\mathbf{r} & =(x, y)=(r \cos \theta, r \sin \theta) \\
\mathbf{v} & =v_{r} \widehat{r}+v_{\theta} \widehat{\theta}=v_{\tau} \widehat{\tau}+v_{n} \widehat{n} \\
& =\dot{r} \widehat{r}+r \dot{\theta} \widehat{\theta}=v \widehat{\tau} \\
\mathbf{a} & =a_{r} \widehat{r}+a_{\theta} \widehat{\theta}=a_{\tau} \widehat{\tau}+a_{n} \widehat{n} \\
& =\left(\ddot{r}-r \dot{\theta}^{2}\right) \widehat{r}+(r \ddot{\theta}+2 \dot{r} \dot{\theta}) \widehat{\theta}=\dot{v} \widehat{\tau}+\left(\frac{v^{2}}{\rho}\right) \widehat{n} \\
\widehat{r} & =(\cos \theta, \sin \theta) \quad \widehat{\theta}=(-\sin \theta, \cos \theta) \\
\widehat{\tau} & =(\cos \psi, \sin \psi) \quad \widehat{n}=(-\sin \psi, \cos \psi)
\end{aligned}
$$

$$
\begin{gathered}
\mathbf{I}=\int_{t_{i}}^{t_{f}} \mathbf{F} d t=m \mathbf{v}_{f}-m \mathbf{v}_{i} \\
\frac{\partial \Psi}{\partial s}=\nabla \Psi \cdot \widehat{s} \\
d \mathbf{r}=(d x, d y) \text { in two dimensions } \\
d \mathbf{r}=(d x, d y, d z) \text { in three dimensions } \\
T=\frac{m(\mathbf{v} \cdot \mathbf{v})}{2}=\frac{m v^{2}}{2} \\
W=\int_{\Gamma}^{\mathbf{F} \cdot d \mathbf{r}} \\
\mathbf{F}=-\frac{G M m}{r^{2}} \widehat{r}
\end{gathered}
$$

