

PROGRAM

: NATIONAL DIPLOMA

COMPUTER SYSTEMS ENGINEERING

ELECTRICAL ENGINEERING TECHNOLOGY

SUBJECT

DIGITAL SYSTEMS III

CODE

: EDS341

DATE

: MID YEAR EXAMINATION

10 JUNE 2014

DURATION

9 08:30-11:30

WEIGHT

: 60:40

TOTAL MARKS

: 100

ASSESSOR

: Mr D.R. VAN NIEKERK

720011220

MODERATOR

: Mr. J. SEBASTIAN

NUMBER OF PAGES

: 4 PAGES AND 1 ANNEXURES

INSTRUCTIONS TO CANDIDATES

- 1. ATTEMPT ALL QUESTIONS. (100 MARKS = 100%)
- 2. MARKS WILL BE DEDUCTED FOR UNTIDY WORK.
- 3. ALL WORK DONE IN PENCIL, EXCEPT DIAGRAMS AND SKETCHES, WILL BE CONSIDERED AS ROUGH WORK AND WILL NOT BE MARKED.
- 4. ALL PARTS OF QUESTIONS MUST BE KEPT TOGETHER.
- 5. ONE POCKET CALCULATOR PER CANDIDATE

[25]

<u>OUE</u>	<u>CSTION 1</u>	
1.1	Name the three basic functions that all microprocessors perform.	(3)
1.2	Describe with the aid of diagrams the two different microprocessor architectus state which one is used by the PIC.	res and (8)
1.3	Briefly discuss each of the following terms:	
1.3.1 1.3.2 1.3.3	Address bus Data bus Control bus	(3) (2) (2)
1.4	Discuss the operation of storing information into RAM.	(4)
		[22]
11		
QUE	STION 2	(1
2,1	Explain each of the following terminology terms:	0
		(1) (1) (1) (2)
2,1 2.1.1 2.1.2 2.1.3	Explain each of the following terminology terms: Object program. Mnemonic. Assembler program.	(1) (1)
2.1.1 2.1.2 2.1.3 2.1.4	Explain each of the following terminology terms: Object program. Mnemonic. Assembler program. Pseudo-opcode. Sketch a flowchart demonstrating each of the steps involved in the software	(1) (1) (2) (10)

QUESTION 3

3.1 Write a PIC16F877A assembler fixed delay subroutine called "D500US" using a single register called "DR1" located in memory 20h. The PIC16F877A micro-controller is clocked by a 4 MHz crystal oscillator.

(6)

3.2 With the aid of a diagram show how three port pins of a PIC16F877A can be expanded to a 16-bit output port using 74HC595 devices.

(5)

3.3 Explain what the sleep instruction could be used for and how the micro-controller can be woken-up.

(4)

[15]

QUESTION 4

- 4.1 Show by means of a diagram how an external (manual) reset switch can be connected to the MCLR pin of the PIC micro-controller. (3)
- 4.2 List in point form the events that take place when a subroutine call is executed. (4)
- 4.3 Explain what the Brown-Out Reset protection circuit of the PIC16F877A microcontroller is used for and describe how it operates. (6)
- 4.4 With the aid of a diagram show how a 12-key, keypad can be connected to Port B of the PIC 16F877A. (5)
- 4.5 List a possible procedure to summarize the software events that take place to validate a key-press on the keypad.

(6)

[24]

QUESTION 5

5.1	Explain how "interrupts" are useful and how it improves the mic	cro-controllers					
	performance.	,	(5)				
5.2	Explain how an interrupt priority structure can be implemented in the PIC16F877A						
	interrupt service routine.		(3)				
5.3	List the features of the PIC16F877A on-chip hardware timer0.		(6)				
			[14]				
		TOTAL	[100]				

TABLE 15-2: PIC16F87XA INSTRUCTION SET

Mnemonic, Operands			Custon	14-Bit Opcode				Status
		Description	Cycles	MSI	b		LSb	Affected
		BYTE-ORIENTED FILE REG	ISTER OPE	RATI	ONS			
ADDWF	f, d	Add W and f	1	00	0111	dff:	ffff	C,DC,Z
ANDWF	. f, d	AND W with f	1	00	0101	dff	ffff	Z
CLRF	f	Clear f	1	00	0001	. lfff	ffff	Z
CLRW	•	Clear W	1	00	0001	. 0.000	XXXX	Z
COMF	f, d	Complement f	1	DC	1001	dfff	ffff	Z
DECF	f, d	Decrement f	1	00	0011	dfff	ffff	Z
DECFSZ	f, d	Decrement f, Skip if 0	1(2)	00	1011	dfff	ffff	ŀ
INCF	f, d	Increment f	1.	00	1010	dfff	ffff	z
INCFSZ	f, d	Increment f, Skip if 0	1(2)	00	1111	dfff	ffff	
IORWF	f, d	Inclusive OR W with f	1	00	0100	dfff	ffff	Z
MOVF	f, d	Move f	1	00	1000	dfff	ffff	Z
MOVWF	f	Move W to f	1	00	0000	lfff	ffff	
NOP	-	No Operation	1 1	00	2000	0xx0	0000	
RLF	f, d	Rotate Left f through Carry	1	00	1101	dfff	ffff	C
RRF	f, d	Rotate Right f through Carry	1 1	00	1100	dfff	ffff	С
SUBWF	f, d	Subtract W from f	1	00	0010	dfff	ffff	C,DC,Z
SWAPF	f, d	Swap nibbles in f	1 1	00	1110	dfff	ffff	_,_,_
XORWF	f, d	Exclusive OR W with f	1	00	0110	dfff	ffff	Z
		BIT-ORIENTED FILE REGIS	TER OPER	ATION	IS			
BCF	f, b	Bit Clear f	1	01	00bb	bfff	ffff	
BSF	f, b	Bit Set f	1 1	01	01bb	bfff	ffff	
BTFSC	f, b	Bit Test f, Skip if Clear	1 (2)	01	10bb	bfff	ffff	
BTFSS	f, b	Bit Test f, Skip if Set	1 (2)	01	11bb	bfff	ffff	
		LITERAL AND CONTROL	. OPERATI	ONS				
ADDLW	k	Add Literal and W	1 1	11	111x	kkkk	kkkk	C,DC,Z
ANDLW	k	AND Literal with W	1	11	1001	kkkk	kkkk	Z
CALL	K	Call Subroutine	2	10	0kkk	kkkk	kkkk	
CLRWDT	-	Clear Watchdog Timer	1 1	00	0000	0110	0100	TO,PD
GOTO -	k	Go to Address	2	10	1kkk	kkkk	kkkk	.
ORLW	k	Inclusive OR Literal with W	1 1	11		kkkk	- 1	Z
MOVLW	k	Move Literal to W	1 1	11		kkkk		
RETFIE	<u>-</u> -	Return from Interrupt	2	00			1001	1.
RETLW	k	Return with Literal in W	2	11		kkkk		l.
RETURN	-	Return from Subroutine	2	00	9000		1000	·
SLEEP	-	Go into Standby mode	1 1	00			0011	TO,PD
SUBLW	ķ	Subtract W from Literal		12		kkkk		C,DC,Z
CORLW	k	Exclusive OR Literal with W		14		kkkk	- 1	Z
	P4	MANAGEM WITH MICHAEL STREET	1	***		esterict	1212-12-12	-