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Question 1 [10 marks]

(1.1) Consider two equal but opposite charges ±q1, separated by a distance 2a0, that form a dipole that
rotates with an angular frequency ω about its centre. A ”receiver” single charge q2 is located at a distance
r0 (with a0 � r0) from the centre of the dipole. Taking the retardation (or time lag) imposed by the
theory of relativity into consideration, show that the electric field E(t) experienced by q2 at a time t is
given by

E(t) =
2q1

4πε0r30
a
(
t− r0

c

)
,

where c is the speed of light. Important: Explain all steps and symbols used, and make use of a diagram
if needed. [7 marks]

(1.2) Explain the difference between transverse and longitudinal wave motions, and give at least one
example for each. [3 marks]

Question 2 [19 marks]

(2.1) Consider a thin, flexible string of mass per unit lengthM and subject to a tensionW . By considering
the net force acting on an element of the string, derive the wave equation governing its transverse motion

∂2y

∂t2
=
W

M

∂2y

∂x2
,

where the wave displacement at time t and position x is given by y(x, t). Important: Explain all steps
and symbols used, and make use of a diagram. [5 marks]

(2.2) Show that travelling waves of the form

y(x, t) = y(u),

where u = x − vt and v is the speed of propagation of the wave, may be solutions of the wave equation
in question (2.1), and find the two possible values of v that make them so. [6 marks]

(2.3) Write down the general solution comprising an arbitrary superposition of the two solutions found
in question (2.2). [1 mark]

(2.4) The string of a harp is plucked by pulling it from its midpoint so that it has the profile shown
below at time t = 0, when it is released from rest. Determine the motion of the harp string following its
release from rest at t = 0. [7 marks]

x 

y 

L/2 L 

a 
t = 0 

Question 3 [20 marks]

(3.1) (a) Why are sinusoidal waves so often considered? [2 marks]
(b) How are they related to complex exponential waves? [2 marks]

(3.2) A sinusoidal wave of frequency 40 Hz has a speed of propagation of 120 m/s.
(a) Calculate the wave period, wavelength and angular frequency. [3 marks]
(b) How far apart are two points whose displacements at any time differ in phase by 15◦? [2 marks]
(c) At a given point, calculate the phase difference between two displacements occurring at times sepa-
rated by 5 ms. [2 marks]
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(3.3) The figure below shows a section of a guitar string undergoing a travelling wave motion ψ(x, t) =
ψ(u), where u = x− vpt. Let us assume that the tension W is constant throughout the string (i.e. W is
not affected by the presence of the wave), and that the wave amplitude is small in comparison with its
wavelength. Show that the total energy E of a short section of the string of natural length δx, position
x0 and mass δm = Mδx (where M is the string’s mass per unit length), is given by: [9 marks]

E = W

(
∂ψ

∂x

)2

δx.50 Sinusoidal waveforms

Fig. 4.2 A travelling wave propagating along a section of a guitar string.

to be constant, being given, respectively, by the ratio of the string’s tension to its
mass per unit length and by the permeability and permittivity of the dielectric
spacer, substitution of the general sinusoidal travelling wave of equation (4.1)
into the capillary wave equation (3.61) yields

v2
p = −h0 σ

ρ
k2. (4.8)

The phase velocity vp hence depends upon the wavenumber k of the sinusoidal
solution – as we saw in Section 3.3 to be the case for the capillary–gravity
and deep-water ocean waves whose wavenumber-dependent phase velocities
are given by equations (3.53) and (3.67). This is an alternative signature of the
phenomenon of dispersion. Only if they are sinusoidal (and hence k is single-
valued) will travelling waves have a definite phase velocity and be solutions to
the wave equation.

We shall consider dispersion further in Chapters 5 and 13, and in Chapter 18
we shall see that it is the cause of the remarkable Kelvin wedge in the wake of
a ship or other watercraft.

4.2 Energy of a wavemotion

We know from everyday experience that a wave motion, be it sound, light or
the displacement waves of the ocean, conveys energy. For the guitar string
of Section 2.2, it is clear that an element of the string undergoing a wave
motion may have a higher energy than when in its relaxed state, by virtue
of both the increased potential energy of the displaced string and the kinetic
energy associated with its motion. In this section, we shall determine these two
components of the wave energy and the rate at which it travels; these specific

Question 4 [16 marks]

The wave equation governing the transverse motion for a skipping rope is the following:

M
∂2y

∂t2
= W

∂2y

∂x2
− γ ∂y

∂t
,

where M is the linear mass density, W is the tension in the string, γ is a damping coefficient and y(x, t)
is the wave displacement at time t and position x.

(4.1) Show that the following complex exponential waveform

y(x, t) = a exp i(kx− ωt)

(where i is the imaginary unit and a is a constant) can be a solution of the wave equation above,
provided that the following condition holds: k2W = ω2M + iγω. [4 marks]

(4.2) Assuming ω to be real and k to be complex, solve the equation k2W = ω2M + iγω for k and
calculate the expressions for the real and the imaginary part of k assuming that γ �Mω. At the end of
this derivation show that the complex exponential waveform in question (4.1) can be re-written as

y(x, t) = a exp i(k0x− ωt) exp(−k0qx)

where k0 = ω

√
M

W
and q =

γ

2Mω
. [12 marks]

Question 5 [10 marks]

Let’s consider a particle that is trapped inside a one-dimensional box with infinitely tall walls (which is
also called a one-dimensional rigid box, or infinite square well). The well’s width goes from x = 0 to
x = a. The particle of mass m moves inside the box at a non-relativistic speed, and there are no forces
acting on the particle.

(5.1) Write down the general form for the particle’s wave function Ψ(x, t), and show how, by imposing
the proper boundary conditions for the wave function, you can get to the quantisation of the wavelength
λ of the particle inside the box. [6 marks]
(Please note: the wavelength is defined as λ = 2π/k, where k is the wavenumber.)



3

(5.2) Combine de Broglie relation p = h/λ (where h is the Planck’s constant) with the result for the
wavelength in (5.1) in order to get to the quantisation of the energy for the particle in the box. [4 marks]

Question 6 [15 marks]

(6.1) The capillary-gravity wave equation for waves in shallow water is given by the following:

∂2h

∂t2
= gh0

∂2h

∂x2
− h0σ

ρ

∂4h

∂x4

where g is the acceleration of gravity, h0 is the water depth, σ is the surface tension, ρ is the density of
water and h(x, t) is the water displacement at time t and position x. Show that a sinusoidal waveform
h(x, t) = h1 sin(ku) (where u = x− vt) may be a solution of this wave equation, and find the expression
for v as a function of k that makes it so. [5 marks]

(6.2) The Korteweg - de Vries wave equation:

∂ψ

∂t
+ 6ψ

∂ψ

∂x
+
∂3ψ

∂x3
= 0

describes the motion of a soliton, i.e. a single wave pulse ψ that maintains its shape while it travels at
constant speed. Show that the travelling wave pulse (with propagation speed c) given by the following:

ψ(x, t) = 2α2sech2[α(x− ct)]

may be a solution of the Kortewegde-Vries wave equation, and find the particular values of the parameter
α that make it so. [10 marks]

HINT: To make the notation lighter, it is suggested that you use the variable z = α(x − ct) while
calculating the time and space derivatives. Moreover, you might need the following information:

sechx =
1

coshx
;

d

dx
coshx = sinhx;

d

dx
sinhx = coshx.

END of QUESTION PAPER
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