faculty of science

DEPARTMENT OF PHYSICS

MODULE: PHYOO2Y

CAMPUS: APK

EXAM: NOVEMBER 2014

DATE: 20/11/2014

ASSESSOR:

MODERATOR:

DURATION: 3 HOURS

NUMBER OF PAGES: 3 PAGES (excluding this information page)

INSTRUCTIONS:

1. Answer ALL the questions.
2. Programmable calculators are not permitted.
3. Remember that, in derivations, explanations carry marks as well as equations.

Question 1 [10 marks]

(1.1) Consider two equal but opposite charges $\pm q_{1}$, separated by a distance $2 a_{0}$, that form a dipole that rotates with an angular frequency ω about its centre. A "receiver" single charge q_{2} is located at a distance r_{0} (with $a_{0} \ll r_{0}$) from the centre of the dipole. Taking the retardation (or time lag) imposed by the theory of relativity into consideration, show that the electric field $E(t)$ experienced by q_{2} at a time t is given by

$$
E(t)=\frac{2 q_{1}}{4 \pi \epsilon_{0} r_{0}^{3}} a\left(t-\frac{r_{0}}{c}\right)
$$

where c is the speed of light. Important: Explain all steps and symbols used, and make use of a diagram if needed. [7 marks]
(1.2) Explain the difference between transverse and longitudinal wave motions, and give at least one example for each. [3 marks]

Question 2 [19 marks]

(2.1) Consider a thin, flexible string of mass per unit length M and subject to a tension W. By considering the net force acting on an element of the string, derive the wave equation governing its transverse motion

$$
\frac{\partial^{2} y}{\partial t^{2}}=\frac{W}{M} \frac{\partial^{2} y}{\partial x^{2}}
$$

where the wave displacement at time t and position x is given by $y(x, t)$. Important: Explain all steps and symbols used, and make use of a diagram. [5 marks]
(2.2) Show that travelling waves of the form

$$
y(x, t)=y(u)
$$

where $u=x-v t$ and v is the speed of propagation of the wave, may be solutions of the wave equation in question (2.1), and find the two possible values of v that make them so. [6 marks]
(2.3) Write down the general solution comprising an arbitrary superposition of the two solutions found in question (2.2). [1 mark]
(2.4) The string of a harp is plucked by pulling it from its midpoint so that it has the profile shown below at time $t=0$, when it is released from rest. Determine the motion of the harp string following its release from rest at $t=0$. [7 marks]

Question 3 [20 marks]

(3.1) (a) Why are sinusoidal waves so often considered? [2 marks]
(b) How are they related to complex exponential waves? [2 marks]
(3.2) A sinusoidal wave of frequency 40 Hz has a speed of propagation of $120 \mathrm{~m} / \mathrm{s}$.
(a) Calculate the wave period, wavelength and angular frequency. [3 marks]
(b) How far apart are two points whose displacements at any time differ in phase by 15° ? [2 marks]
(c) At a given point, calculate the phase difference between two displacements occurring at times separated by 5 ms . [2 marks]
(3.3) The figure below shows a section of a guitar string undergoing a travelling wave motion $\psi(x, t)=$ $\psi(u)$, where $u=x-v_{p} t$. Let us assume that the tension W is constant throughout the string (i.e. W is not affected by the presence of the wave), and that the wave amplitude is small in comparison with its wavelength. Show that the total energy \mathcal{E} of a short section of the string of natural length δx, position x_{0} and mass $\delta m=M \delta x$ (where M is the string's mass per unit length), is given by:
[9 marks]

$$
\mathcal{E}=W\left(\frac{\partial \psi}{\partial x}\right)^{2} \delta x
$$

Question 4 [16 marks]

The wave equation governing the transverse motion for a skipping rope is the following:

$$
M \frac{\partial^{2} y}{\partial t^{2}}=W \frac{\partial^{2} y}{\partial x^{2}}-\gamma \frac{\partial y}{\partial t}
$$

where M is the linear mass density, W is the tension in the string, γ is a damping coefficient and $y(x, t)$ is the wave displacement at time t and position x.
(4.1) Show that the following complex exponential waveform

$$
y(x, t)=a \exp i(k x-\omega t)
$$

(where i is the imaginary unit and a is a constant) can be a solution of the wave equation above, provided that the following condition holds: $k^{2} W=\omega^{2} M+i \gamma \omega$. [4 marks]
(4.2) Assuming ω to be real and k to be complex, solve the equation $k^{2} W=\omega^{2} M+i \gamma \omega$ for k and calculate the expressions for the real and the imaginary part of k assuming that $\gamma \ll M \omega$. At the end of this derivation show that the complex exponential waveform in question (4.1) can be re-written as

$$
y(x, t)=a \exp i\left(k_{0} x-\omega t\right) \exp \left(-k_{0} q x\right)
$$

where $k_{0}=\omega \sqrt{\frac{M}{W}}$ and $q=\frac{\gamma}{2 M \omega}$. [12 marks]

Question 5 [10 marks]

Let's consider a particle that is trapped inside a one-dimensional box with infinitely tall walls (which is also called a one-dimensional rigid box, or infinite square well). The well's width goes from $x=0$ to $x=a$. The particle of mass m moves inside the box at a non-relativistic speed, and there are no forces acting on the particle.
(5.1) Write down the general form for the particle's wave function $\Psi(x, t)$, and show how, by imposing the proper boundary conditions for the wave function, you can get to the quantisation of the wavelength λ of the particle inside the box. [6 marks]
(Please note: the wavelength is defined as $\lambda=2 \pi / k$, where k is the wavenumber.)
(5.2) Combine de Broglie relation $p=h / \lambda$ (where h is the Planck's constant) with the result for the wavelength in (5.1) in order to get to the quantisation of the energy for the particle in the box. [4 marks]

Question 6 [15 marks]

(6.1) The capillary-gravity wave equation for waves in shallow water is given by the following:

$$
\frac{\partial^{2} h}{\partial t^{2}}=g h_{0} \frac{\partial^{2} h}{\partial x^{2}}-\frac{h_{0} \sigma}{\rho} \frac{\partial^{4} h}{\partial x^{4}}
$$

where g is the acceleration of gravity, h_{0} is the water depth, σ is the surface tension, ρ is the density of water and $h(x, t)$ is the water displacement at time t and position x. Show that a sinusoidal waveform $h(x, t)=h_{1} \sin (k u)$ (where $u=x-v t$) may be a solution of this wave equation, and find the expression for v as a function of k that makes it so. [5 marks]
(6.2) The Korteweg - de Vries wave equation:

$$
\frac{\partial \psi}{\partial t}+6 \psi \frac{\partial \psi}{\partial x}+\frac{\partial^{3} \psi}{\partial x^{3}}=0
$$

describes the motion of a soliton, i.e. a single wave pulse ψ that maintains its shape while it travels at constant speed. Show that the travelling wave pulse (with propagation speed c) given by the following:

$$
\psi(x, t)=2 \alpha^{2} \operatorname{sech}^{2}[\alpha(x-c t)]
$$

may be a solution of the Kortewegde-Vries wave equation, and find the particular values of the parameter α that make it so. [10 marks]

HINT: To make the notation lighter, it is suggested that you use the variable $z=\alpha(x-c t)$ while calculating the time and space derivatives. Moreover, you might need the following information:
$\operatorname{sech} x=\frac{1}{\cosh x} ; \frac{\mathrm{d}}{\mathrm{d} x} \cosh x=\sinh x ; \frac{\mathrm{d}}{\mathrm{d} x} \sinh x=\cosh x$.

