

FACULTY OF SCIENCE

BTECH: BIOTECHNOLOGY and BIOMEDICAL TECHNOLOGY

MODULE

LE RECOMBINANT DNA TECHNOLOGY 4 BTN1YD4 MOLECULAR BIOLOGY 4 MCB41-1 US DFC

NOVEMBER EXAMINATION SECTION 2

DATE: 12/11/2012

ASSESSOR(S)

EXTERNAL MODERATOR

DURATION 3 HOURS

SESSION: 8:30 - 11:30

MR L ALAGIOZOGLOU

DR K. KONDIAH

MARKS FOR SECTION 2 90

FULL MARKS 150

NUMBER OF PAGES: 5 PAGES

INSTRUCTIONS: THIS ASSESSMENT IS COMPOSED OF 2 SECTIONS. COMPLETE SECTION 1 ON THE MCQ CARD PROVIDED. COMPLETE SECTION 2 ON THE ANSWER SCRIPT PROVIDED. CALCULATORS ARE PERMITTED (ONLY ONE PER STUDENT) CELL PHONES MAY NOT BE USED AS CALCULATORS QUESTIONS MAY BE ANSWERED IN ANY ORDER BUT ALL THE <u>SUB-QUESTIONS MUST BE ANSWERED TOGETHER</u>. DO NOT BE VAGUE IN YOUR DESCRIPTIONS OR EXPLANATIONS ELSE YOU WILL NOT BE AWARDED MARKS. SUBMIT QUESTION PAPER TOGETHER WITH YOUR ANSWER SCRIPT.

REQUIREMENTS: 1 DOUBLE ANSWER SCRIPT PER STUDENT

QUESTION 1:

Make 200 ml of a 15 mM Tris, 50 mM EDTA, and 0.03 M NaCl from stock solutions that are 1M Tris, 0.5 M EDTA, and 5000 mM NaCl.

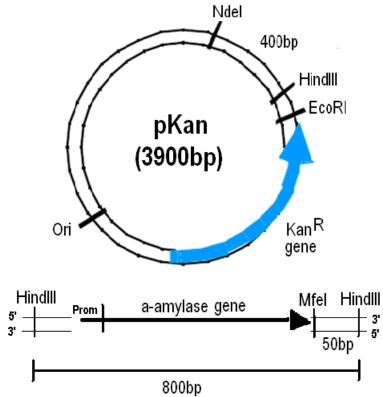
Molecular weights: Tris is 121.1; NaCl is 58.44 and EDTA is 187.0 [4]

QUESTION 2

- 2.1 Cells of genotype lacl⁻ lacO⁺ lacZ⁺ lacY⁺ Hfr are mated with cells of genotype lacl⁺ lacO⁺ lacZ⁺ lacY⁺ F⁻. In the absence of any inducer in the medium, no β-galactosidase is made. However, when the lacl⁺ lacO⁺ lacZ⁺ lacY⁺ Hfr strain is mated with a strain of genotype lacl⁻ lacO⁺ lacZ⁺ lacY⁻ F⁻ under the same conditions, B-galactosidase is synthesized for a short time after the Hfr and F⁻ cells have been mixed. Explain this observation. (BONUS 6)
- 2.2 Satellites account for approximately 40% of the human genome. Name 4 satellite DNA (full names first if using abbreviations) and provide a brief description of each

<u>(12)</u> [12]

QUESTION 3


Write 1-12 on your answer script and complete the missing blanks on the CRISPR/Cas prokaryotic defence mechanism.

The CRISPR/Cas prokaryotic defence mechanism involves 3 stages which are _1_, _2_ and _3_. During the initial stage of CRISPR, short sequences knows as protospacers are copied from _4__ and inserted between repetitive sequences such as __5_ within the CRISPR locus within the host genome. _5__ which is the acronym for _6__ _7__ _8__ is responsible for allowing the cas nuclease to differentiate the host sequence from the foreign nucleic acid. The repetitive sequences found in the CRISP array is transcribed into a pre-crRNA by the enzyme _9__ _10__. The transcript is subsequently trimmed by Cas to generate crRNA that contains one spacer and one partial _11__ sequence. The crRNA eventually interacts with the target DNA forming a secondary structure such as the _12__ - loop which will be responsible for recruiting one of the Cas proteins to cleave the target DNA sequence.

[12]

QUESTION 4

You have been provided with a purified DNA preparation of pKan, a 3900bp circular plasmid, which contains a bacterial origin of replication (ori) and the gene for kanamycin resistance (kan^R). In addition, you also have a purified preparation of an 800 bp linear DNA fragment that contains the entire gene for α -amylase. These two DNA molecules with their known restriction enzyme sites are shown below:

Prom: α-amylase promoter

The restriction enzymes listed below cut the following sequences: *Hind*III: A/AGCTT *Nde*I: CA/TATG *Mfe*I: C/AATTG *Eco*RI: G/AATTC

You want to produce a new recombinant plasmid, which will be called pKanAmy. It will contain genes that confer both kanamycin resistance and amylase expression. To accomplish this task, you have available the four restriction enzymes, *Hind*III, *Nde*I, *Mfe*I, and *Eco*RI.

To begin the cloning process, you digest both pKan and the α -amylase DNA fragment with *Hind*III and separate the DNA samples by size on an agarose gel. You isolate the relevant fragments from the gel, mix them together in a tube and ligate them with the enzyme DNA ligase. You use your ligation mix to transform *E. coli* cells which you then spread on kanamycin-containing plates and grown overnight to isolate bacterial colonies.

Several lab groups in your class independently carried out the following ligation and transformation steps to introduce the α -amylase gene into the pKan vector.

Reactions (a) - (f) were carried out in parallel. The results obtained by each of the groups were as follows:

		# Colonies on LB-Kan Plates					
Transf	ormation into Gold cells	Group 1	Group 2	Group 3	Group 4		
-	+ α -amylase insert (CIAP treated)	0	529 2	2 5	1125 930		
•	e gene alone	0	0	0	930 890		
d. Uncut pK	•	0	852	900	1050		
-			975	975	1030		
f. No DNA		0	0	0	925		
	Key: CIAP = Calf intestinal alkaline phosphatase Gold = Stratagene's SoloPack [™] Gold supercompetent <i>E. coli</i> cells						
4.1 Which g	4.1 Which group obtained the expected/desired pattern of results? (1)						
	4.2 Provide a likely explanation for the unexpected/undesirable results obtained by each of the other three groups. (Only 1 explanation per group) (3)						
	 Calculate the transformation efficiency of Stratagene's supercompetent cells. Show formulas & calculations. (3) 						
4.4 Explain	4 Explain the function of CIAP in cloning?				(4)		
4.5 Would	5 Would directional cloning be achieved in your experiment? Explain.				(3)		
you wo gene fr	Now that you have the pKanAmy plasmid containing the α-amylase gene, explain how you would construct a probe that would be used to hybridise and detect the α-amylase gene from a genomic sample by performing a Southern blot. (Note: discuss probe synthesis and detection not Southern blotting) (8)						

QUESTION 5

- 5.1 In chronic myelogenous leukaemia, name the translocation that gives rise to the Philadelphia Chromosome? (2)
- 5.2 Briefly explain how the *C-abl* cellular gene of the Philadelphia chromosome becomes oncogenic? (6) [8]

QUESTION 6

Answer the following short questions.

6.1	Unlike prokaryotes, eukaryotes have three RNA polymerases. What are they and does each do?	what (3)
6.2	How does chromatin structure regulate gene transcription?	(3)

6.3 Name one trinucleotide repeat disorder.

(1)

6.4	Repair of pyrimidine dimers in E.coli by means of RecA utelises which of the mechanisms?	repair (2)
6.5	Define fidelity with regard to DNA polymerases.	(2)
6.6	Cell lines may be obtained from ATCC. What does this acronym stand for?	(2)
6.7	Name one of the next generation sequencing platforms.	(1)
6.8	Introducing mutations within a promoter may be used to establish the effect polymorphism in gene expression. What is this assay called?	of the (2)
6.9	PCR is used to amplify DNA. Provide the full name a technique used in amplification. (1/2 mark for acronym).	RNA (2)
6.10	Which part of the bacterium are disulphide bonds synthesised.	(1)
6.11	What do you call the high levels of insoluble protein aggregates formed in E. colid recombinant protein expression?	during (2)
6.12	Which sub-stage within meiosis I do homologous chromosomes pair by measynaptonemal complexes?	ans of (1)
6.13	The anti-TRAP operon in <i>B. subtillis</i> utilises uncharged tRNA-trp as the metaboregulate expression of the anti-TRAP protein. What is the general name given to mRNA sequences present upstream from the coding sequence that allow for regulation.	these
6.14	Name the complex of proteins binding to the enhancer that interacts wit transcription activators.	h the (1)
6.15	Name an ATP hydrolysis-dependent chromatin remodeling process.	(2)
6.16	How is the Dscam gene in <i>Drosophila melanogaster</i> able to generate multiple pre required for multiple connections with adjacent neurons?	oteins (2)
6.17	Name the dimeric RNAse enzyme found in eukaryotes that cleaves double stra RNA molecules into short-interfering RNA.	anded (1)
6.18	What is the name given to the PCR technique that amplifies more than 1 simultaneously?	locus (1)
6.19	Provide the full name for X-gal.	<u>(2)</u> [32]