

FACULTY OF SCIENCE

DEPARTMENT OF APPLIED CHEMISTRY

NATIONAL DIPLOMA: ANALYTICAL CHEMISTRY EXTENDED

MODULE CET1CY1

CHEMISTRY 1CY1

CAMPUS DFC

DECEMBER EXAMINATION

DATE: 03/12/2014 SESSION: 08:00 -11:00

ASSESSOR DR K PILLAY

INTERNAL MODERATOR DR N MAXAKATO

DURATION 3 HOURS MARKS 150

NUMBER OF PAGES: 5 PAGES AND 1 ANNEXURE

INSTRUCTIONS: ANSWER ALL QUESTIONS

CALCULATORS ARE PERMITTED (ONLY ONE PER STUDENT)

THE QUESTION PAPER MUST BE HANDED IN WITH THE ANSWER SHEET

PLEASE HAND IN THE QUESTION PAPER.

REQUIREMENTS: ANSWER SCRIPTS.

INSTRUCTIONS TO CANDIDATES:

- 1. PLEASE ANSWER ALL THE QUESTIONS.
- 2. AVOGADRO'S NUMBER = 6.022×10^{23}

QUESTION 1

1.1 A sample containing only boron and fluorine was decomposed yielding 4,75 mg of boron and 17,5 mL fluorine (density = 1,43 g/L). What is the empirical formula of the sample compound?

(7)

1.2 Nitrobenzene, C₆H₅NO₂, an important raw material for the dye industry, is prepared from benzene, C₆H₆ and nitric acid, HNO₃:

 $C_6H_6(I) + HNO_3(I) \rightarrow C_6H_5NO_2(I) + H_2O(I)$

1.2.1 When 21,6 g of benzene and 15,0 g of HNO₃ are used, what is the theoretical yield of nitrobenzene?.

(6)

1.2.2 If 20,0 g of nitrobenzene was recovered, what was the percentage yield?

(2) [**15**]

QUESTION 2

- 2.1 Iron(III) chloride can be prepared by reacting iron metal with chlorine.
- 2.1.1 Write a balanced chemical equation for the reaction.

(4)

2.1.2 How many grams of iron are required to produce enough iron(III) chloride to make 3,00 L of aqueous solution containing 9,00% iron(III) chloride by mass? The density of the solution is 1,067 g/mL.

(6)

2.2 How many millilitres of 0,150 M sulphuric acid are required to react with 8,20 g of sodium hydrogen carbonate?

(5)

2.3 Identify the conjugate acid-base pairs in the following acid-base equilibrium reactions:

(4)

- 2.3.1 HCOOH(aq) + $H_2O(I) \rightleftharpoons H_3O^+(aq) + HCOO^-(aq)$
- 2.3.2 $HCO_3^-(aq) + H_2S(g) = H_2CO_3(aq) + HS^-(aq)$

QUESTION 2 (CONTINUED)

- 2.4 Barium carbonate is the source of barium compounds. It is produced in an aqueous precipitation reaction between barium sulphide and sodium carbonate.
- 2.4.1 Give the balanced molecular and net ionic equation for the precipitation reaction. (4)
- 2.4.2 Identify the spectator ions. (2)
- 2.4.3 A solution containing 33,9 g of barium sulphide and 21,2 g of sodium carbonate is allowed to react completely. How many grams of precipitate are produced?
- 2.5 The following reaction occurs in **basic medium**:

$$H_2O_2(aq) + Cl_2O_7(aq) \rightarrow ClO_2^-(aq) + O_2(g)$$

- 2.5.1 Identify the oxidizing and reducing agent in the above reaction. (2)
- 2.5.2 Balance the above equation. (10)
- 2.5.3 What mass of H_2O_2 is required to produce 100 mg of O_2 ? (5)

[<u>46</u>]

(4)

QUESTION 3

- 3.1 State Le Chatelier's principle. (2)
- 3.2 Consider the equilibrium:

$$H_2(g) + I_2(g) \rightleftharpoons 2HI(g) (\Delta H = +ve)$$

How will the position of the equilibrium be affected by the following changes:

- 3.2.1 Adding H_2 to the system. (2)
- 3.2.2 Adding a catalyst to the system. (2)
- 3.2.3 Increasing the temperature to 1000 K. (2)
- 3.2.4 Decreasing the volume of the reaction vessel. (2)
- 3.3 Consider the equilibrium:

$$HCN(aq) + OH^{-}(aq) \Rightarrow CN^{-}(aq) + H_2O(1)$$

- 3.3.1 Is the above equilibrium a heterogeneous or a homogeneous equilibrium? Give a reason for your answer.
- 3.3.2 Write the equilibrium constant expression for this reaction. (2)
- 3.3.3 If the equilibrium constant = 0,915 for the above reaction, comment on the relative quantities of reactants and products in the above reaction and on the equilibrium position.

(2)

(3)

QUESTION 3 (CONTINUED)

3.4 Sulfuryl chloride (SO₂Cl₂) is used in organic chemistry as a chlorinating agent. At moderately high temperatures it decomposes as follows:

$$SO_2Cl_2(g) \neq SO_2(g) + Cl_2(g)$$

with $K_C = 0.045$ at 650 K.

3.4.1 A sample of 8,25 g of SO₂Cl₂ is placed in a 1,00 L reaction vessel and heated to 650 K. What are the equilibrium concentrations of all of the species?

3.4.2 What fraction of SO₂Cl₂ has decomposed?

(11)

(2) [**30**]

QUESTION 4

4.1 For each of the following pairs of atoms:

F and Li; As and Br

Pick the atom or atoms with:

4.1.1 The more favourable (exothermic) electron affinity

(2)

4.1.2 The higher ionization energy

(2)

4.1.3 Larger size

- (2)
- 4.2 Arrange the atoms Mg, Ca and S in order of increasing ionization energy. Motivate your answer by giving the general trends in ionization energy and explain why these trends are observed.

(9)

4.3 Consider the following elements:

Sc, As, S

4.3.1 Arrange these elements in order of increasing atomic size. Explain your order.

(3)

4.3.2 Explain the trend in atomic size which you have suggested above.

(6)

- 4.4 Write equations corresponding to the following:
- 4.4.1 The second ionization energy of Mg.

(1) (1)

4.4.2 The electron affinity of Se.

<u>[26]</u>

QUESTION 5		
5.1	Distinguish between molecular geometry and electron domain geometry using suitable examples.	(4)
5.2	Consider the molecule: POCl ₃	
5.2.1 5.2.2 5.2.3	Sketch the Lewis structure for this molecule. Use VSEPR theory to predict the shape of this molecule. What electron domain geometry and bond angle do you associate with this molecule?	(2) (3)
5.2.4	Is the above molecule polar or non-polar? Explain.	(2) (2)
5.3	A polyatomic ion is composed of N and an unknown element X. The skeletal Lewis structure for this ion is $[X-N-X]^-$. The ion X^{2-} has the same electron configuration as Ne with 8 protons.	
5.3.1 5.3.2	Identify the element X. Sketch the Lewis structure for this ion and use VSEPR theory to	(2)
	predict the shape of this ion.	(6) [<u>21</u>]
QUESTION 6		
6.1	Identify the most significant intermolecular forces present in each of the following substances:	
		(2) (2) (2) (2)
6.2	Consider the following compounds:	
	1-pentanol (CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ OH) Hexane (CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃)	
6.2.1	List all the different types of intermolecular forces that exist in each	(2)
6.2.2	compound. One of the compounds has a normal boiling point of 69°C, and the other has a normal boiling point of 138°C. Which is the boiling point of	(3)
6.2.3	hexane? Explain your answer. One of the compounds has a viscosity of 0,313 g/(cm-s) and the other a viscosity of 2,987 g/(cm-s). Assign these viscosities to the above compounds. Explain your answer.	(4)
		(4) [19]