

FACULTY OF SCIENCE

DEPARTMENT OF APPLIED CHEMISTRY			
NATIONAL DIPLOMA IN ANALYTICAL CHEMISTRY (4 years)			
MODULE	CET1BO3 ORGANIC CHEMISTRY 2		
CAMPUS	DFC		
NOVEMBER EXAMINATION			

DATE: 17/11/2014

SESSION: 08:30 - 11:30

EXAMINER

INTERNAL MODERATOR

DURATION: 3 HOURS

MS H OOSTHUIZEN

DR PP GOVENDER

MARKS: 140

NUMBER OF PAGES: 6

INSTRUCTIONS: ANSWER ALL QUESTIONS.

REQUIREMENT: ANSWER SCRIPT.

SECTION 1

ANSWER THIS SECTION IN YOUR ANSWER SCRIPT BY WRITING THE <u>QUESTION</u> <u>NUMBER</u> AND THE <u>LETTER OF YOUR CHOICE.</u> FOR EXAMPLE: 2. B

- 1. Sec-butyl is the name for which of the following alkyl groups?
 - A. $(CH_3)_2CHCH_2-$
 - B. $CH_3CH_2CH(CH_3)$ -
 - C. $CH_3(CH_2)_2CH_2-$
 - D. (CH₃)₃C-
- 2. Which of the following contains only nucleophiles?
 - A. FeBr₃; Br⁻; I⁻; OH⁻
 - B. H_2O ; BF_3 ; NO_2^+ ; H^+
 - C. HS^{-} ; H_2O ; NH_3 ; OH^{-}
 - $D. \quad AICI_3; H_2O_2; Hg; NH_3$
- 3. The best reagent to use to produce propene from chloropropane is
 - A. sodium hvdroxide
 - B. sodium ethoxide
 - C. sodium *t*-butoxide
 - D. any of the above
- 4. Which of the following compounds represents a geminal dihalide?
 - A. 1-chloro-1-iodobutane
 - B. 1-bromobutanol
 - C. 1,2-dibromobutane
 - D. chlorobutane and butane chloride
- 5. The reaction between propene and HBr is an example of
 - A. nucleophilic substitution
 - B. nucleophilic addition
 - C. electrophilic substitution
 - D. electrophilic addition
- 6. The following set of reagents leads to a Markovnikov reaction.
 - A. HBr
 - B. HCI/H₂O₂
 - C. Hg(OAc)₂/THF/H₂O
 - D. All of the above
- 7. Dehydrohalogenation of vicinal dihalides may produce
 - A. alkenes
 - B. alkynes
 - C. either of the above
 - D. none of the above
- 8. Which of the following is **NOT** true of benzene?
 - A. Benzene tends to undergo substitution rather than addition reactions.
 - B. Benzene is more stable than the hypothetical compound 1,3,5-cyclohexatriene.
 - C. The C-C bonds of benzene are alternatively short and long.
 - D. Only one *o*-chlorobenzene exists.

- A. HNO₃/H₂SO₄
- B. (1) $KMnO_4/OH^-/\Delta$ (2) H_3O^+
- C. SO_3/H_2SO_4
- D. O₂
- 10. When preparing a Grignard reagent, the following may not be present:
 - A. –OH
 - $\mathsf{B}.\quad -\mathsf{N}\mathsf{H}_2$
 - C. –C≡N
 - D. All of the above
- 11. The reaction between lithium di-sec-butylcuprate and isopentylbromide yields
 - A. 2,5-dimethylheptane
 - B. 3,5-dimethylheptane
 - C. 2,6-dimethylheptane
 - D. 3,4-dimethylheptane
- 12. Which of the following reagents can be used as a laboratory test to distinguish between CH₃CH₂CHO and CH₃COCH₃?
 - A. Br₂/CCl₄
 - B. $Ag(NH_3)_2^+/H_2O$
 - C. LiAlH₄
 - D. Zn/Hg/HCl
- 13. The explosive impurities in ethers that contain an oxygen-oxygen bond are called
 - A. peroxides
 - B. epoxides
 - C. oxides
 - D. oxyethers
- 14. Which of the following is a derivative of a carboxylic acid?
 - A. Esters
 - B. Anhydrides
 - C. Amides
 - D. All of the above
- 15. Lithium aluminium hydride cannot be used to reduce a carboxylic acid to an aldehyde because
 - A. it is an oxidizing agent
 - B. an alcohol will rather be formed
 - C. a ketone will be formed
 - D. carboxylic acids cannot be reduced

[15 x 2 = 30]

SECTION 2

QUESTION 1

Complete the following sentences by writing only the number and the missing word(s), formula(e) or equation(s) in your answer script.

The reactivity of an organic compound depends on (1). The general reactions that organic compounds undergo can be classified as (2), (3) or (4).

A carbocation can be stabilized in three ways, namely (5)____, (6)____ and (7)____.

A cyanohydrin is a compound containing both a (8)____ and a (9)____ group.

An example of a polar protic solvent is (10)____. Such solvents are best for reactions following an (11)____ mechanism since the solvent stabilizes the (12)____ well.

For an E2 reaction to be successful the leaving groups must be anti coplanar. This means (13)____, as illustrated in the following Newman projection (14)___. The reasons for this are (15)___ and (16)___.

Some alkenes can exist as two geometric isomers called (17)____ and (18)____, respectively. These isomers have the same order of attachment of their atoms, but different (19)____. The following examples illustrate this: (20)___ and (21)____.

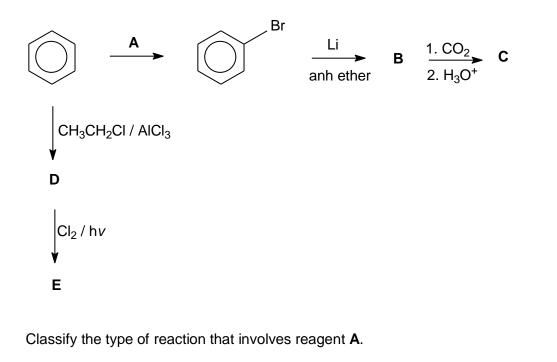
The intermediates formed during a homolytic reaction are called (22)____. The reaction between (23)____ and (24)____ is an example of a homolytic reaction.

The preparation of the least substituted alkene as major product follows the (25)_____ rule. This reaction can be done by heating a basic solution of a (26)____.

Due to (27)____ and (28)____, Friedel-Crafts alkylation is not the ideal way of preparing propylbenzene. The better way is to do a (29)____, followed by (30)____.

To be aromatic, a compound or ion must comply with all of the following rules: (31)___, (32)___ and (33)___. An example of an aromatic compound is (34)___. An example of an aromatic ion is (35)___.

In the preparation of an organometallic compound the best solvent to use is (36)_____ since (37)____ and (38)____.


Aldehydes and ketones contain the same functional group. However, (39) are more reactive due to (40) and (41).

Carboxylic acids can be prepared from alkenes or alkynes using (42)____.

A specific derivative of a carboxylic acid may be prepared from another derivative provided that it is (43)____ reactive than the substrate. An example of such a reaction is (44)____. [45]

QUESTION 2

2.1 Provide the missing reagents or major products (labeled **A** to **E**) for the following transformations. Write only the letter and the missing reagent/product in your answer script.

QUESTION 3

2.2

- 3.1 Write equations representing each of the following reactions.
- 3.1.1 2-Methylbutene + (1) BH₃ : THF + (2) $H_2O_2/OH^- \rightarrow$
- 3.1.2 Propyl ethanoate + (1) CH₃MgCl + (2) H₃O⁺ \rightarrow
- 3.1.3 Butyne + HgSO₄/H₂O/H₂SO₄ \rightarrow
- 3.1.4 3,4-Dimethyl-2-pentanol + $H^+ \rightarrow$
- 3.1.5 2,2-Dimethyl-3-chloropentane + $NH_3 \rightarrow$
- 3.1.6 2-Methyliodopropane + CH₃ONa \rightarrow
- 3.1.7 2-Methylbutanal + Na₂Cr₂O₇ \rightarrow
- 3.1.8 2-Butyne + (1) O_3 + (2) $H_3O^+ \rightarrow$
- 3.1.9 Phenylpropanone + $CH_3NH_2 \rightarrow$
- 3.1.10 Butanoic acid + methanol / H⁺ \rightarrow
- 3.2 Use structural formulae to represent the mechanisms of the reactions that occur in Question 3.1.1, Question 3.1.4 **AND** Question 3.1.10, respectively. (20) [40]

(5)

(2) **[7]**

(20)

QUESTION 4

- 4.1 Three unsaturated compounds (A, B and C) all have the formula C₆H₁₀. When A was oxidized with hot potassium permanganate and subsequently acidified, the only organic compound isolated was pentanoic acid. Similar oxidation of B yielded only propanoic acid, while similar treatment of C gave only an unsubstituted dioic acid. Determine the structures of A, B and C. (6)
- 4.2 Outline a synthetic scheme for the following transformations. More than one step may be required for each conversion. No mechanism is required.

		[23]
4.2.2	Methanal \rightarrow hexane	(7)
4.2.1	Propyne \rightarrow 3-methylbutanal + ethanal	(10)

TOTAL MARKS = 145