

FACULTY OF SCIENCE

DEPARTMENT OF APPLIED CHEMISTRY NATIONAL DIPLOMA: ENGINEERING METALLURGY NATIONAL DIPLOMA: EXTRACTION METALLURGY

MODULE CET1AM2
METALLURGICAL CHEMISTRY 2
CAMPUS DFC

DECEMBER EXAMINATION

DATE: /12/2014
SESSION: 08:30-11:30
ASSESSOR
DR J RAMONTJA
INTERNAL MODERATOR
MR PP MONAMA
DURATION 3 HOURS MARKS 140

NUMBER OF PAGES: 15 PAGES, INCLUDING 2 ANNEXURES
INSTRUCTIONS: ANSWER SECTION A (THE MULTIPLE CHOICE QUESTIONS) AND SECTION B (LONG QUESTIONS) IN SEPARATE ANSWER SCRIPTS.

FOR SECTION A, CLEARLY SHADE THE LETTER CORRESPONDING TO THE ANSWER OF CHOICE.

CONSULT THE DATA SHEET AND THE PERIODIC TABLE FOR ALL SUPPLEMENTARY INFORMATION.

NON-PROGRAMMABLE CALCULATORS ARE PERMITTED (ONLY ONE PER STUDENT).
GIVE ALL NUMERICAL ANSWERS TO THE CORRECT NUMBER OF SIGNIFICANT FIGURES AND WITH APPROPRIATE UNITS.

REQUIREMENTS: 2 ANSWER SCRIPT (INCLUDING MULTIPLE CHOICE).

SECTION A

1. When the concentrations of reactant molecules are increased, the rate of reaction increases. The best explanation for this phenomenon is that as the reactant concentration increases
A. the average kinetic energy of molecules increases.
B. the frequency of molecular collisions increases.
C. the rate constant increases.
D. the activation energy increases.
E. the order of reaction increases.
2. For the reaction represented below, the experimental rate law is given by
$\left.\mathrm{CH}_{3}\right)_{3} \mathrm{CCl}(\mathrm{aq})+\mathrm{OH}^{-} \rightarrow\left(\mathrm{CH}_{3}\right)_{3} \mathrm{COH}(\mathrm{aq})+\mathrm{Cl}^{-}, \quad$ rate $=\mathrm{k}\left[\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCl}\right]$
If some solid sodium hydroxide were added to a solution in which $\left[\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCl}\right]=0.01 \mathrm{M}$ and $[\mathrm{NaOH}]=0.10 \mathrm{M}$, which of the following would be true? (Assume the temperature and volume remains constant.)
A. Both the reaction rate and k would increase.
B. Both the reaction rate and k would decrease.
C. Both the reaction rate and k would remain the same.
D. The reaction rate would increase but k would remain the same.
E. The reaction rate would decrease but k would remain the same.
3. For the overall chemical reaction shown below, which one of the following statements can be rightly assumed?
$2 \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{~S}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
A. The reaction is third-order overall.
B. The reaction is second-order overall.
C. The rate law is, rate $=\mathrm{k}\left[\mathrm{H}_{2} \mathrm{~S}\right]_{2}\left[\mathrm{O}_{2}\right]$.
D. The rate law is, rate $=k\left[\mathrm{H}_{2} \mathrm{~S}\right]\left[\mathrm{O}_{2}\right]$.
E. The rate law cannot be determined from the information given.
4. For the reaction $\mathrm{BrO}_{3}{ }^{-}+5 \mathrm{Br}^{-}+6 \mathrm{H}^{+} \rightarrow 3 \mathrm{Br}_{2}+3 \mathrm{H}_{2} \mathrm{O}$ at a particular time, $-\Delta\left[\mathrm{BrO}_{3}^{-}\right] / \Delta \mathrm{t}=1.5 \times 10^{-2} \mathrm{M} / \mathrm{s}$.

What is $-\Delta[\mathrm{Br}] / \Delta \mathrm{t}$ at the same instant?
A. $\quad 13 \mathrm{M} / \mathrm{s}$
B. $\quad 7.5 \times 10^{-2} \mathrm{M} / \mathrm{s}$
C. $\quad 1.5 \times 10^{-2} \mathrm{M} / \mathrm{s}$
D. $\quad 3.0 \times 10^{-3} \mathrm{M} / \mathrm{s}$
E. $\quad 330 \mathrm{M} / \mathrm{s}$
5. A certain reaction $A \rightarrow$ products is second order in A. If this reaction is 85% complete in 12 minutes, how long would it take for the reaction to be 15% complete?
A. 110 s
B. 27 s
C. 62 s
D. 130 s
E. 22 s
6. It takes 42.0 min for the concentration of a reactant in a first-order reaction to drop from 0.450 M to 0.320 M at $25^{\circ} \mathrm{C}$. How long will it take for the reaction to be 90% complete?
A. $\quad 13.0 \mathrm{~min}$
B. $\quad 86.0 \mathrm{~min}$
C. 137 min
D. 222 min
E. $\quad 284$ min
7. Consider the two Boltzmann distributions for an endothermic reaction that was conducted at temperatures T_{1} and then T_{2} (where $T_{1}<T_{2}$).

Labels A, B, C and D in the diagram above are best described respectively as:
A. activation energy of the forward reaction; activation energy of the reverse reaction; temperature; number of molecules
B. activation energy of the reverse reaction; activation energy of the forward reaction; temperature; number of molecules
C. activation energy of the reverse reaction; activation energy of the forward reaction; number of molecules; kinetic energy
D. activation energy of the forward reaction; activation energy of the reverse reaction; kinetic energy; number of molecules
E. none of the above options
8. For the reaction $\mathrm{COF}_{2}(g) \rightleftharpoons \mathrm{CO}(g)+\mathrm{F}_{2}(g)$,
the following mechanism has been proposed:
$2 \mathrm{COF}_{2}(g) \rightleftharpoons 2 \mathrm{COF}(g)+\mathrm{F}_{2}(g)$
$2 \mathrm{COF}(\mathrm{g}) \rightleftharpoons 2 \mathrm{CO}(\mathrm{g})+\mathrm{F}_{2}(\mathrm{~g})$
Based upon this mechanism and the information supplied it can be inferred that:
A. the intermediate in this mechanism is $\operatorname{COF}(g)$
B. the rate of formation of $F_{2}(g)$ in (1) is slower than the rate of formation of $\mathrm{F}_{2}(\mathrm{~g})$ in (2)
C. the rate of formation of $\operatorname{COF}(g)$ in (1) is slower than the rate of consumption of $\operatorname{COF}(g)$ in (2)
D. the rates of consumption and production of $\operatorname{COF}(g)$ in (1) are the rate determining steps
E. the overall reaction order is three
9. For the equilibrium: $\mathrm{N}_{2}(g)+\mathrm{O}_{2}(g) \rightleftharpoons 2 \mathrm{NO}(g) \Delta \mathrm{H}=-12.5 \mathrm{~kJ} / \mathrm{mol}$

When the temperature of the reaction vessel is halved then
A. the quantity of nitrogen monoxide decreases
B. the quantities of nitrogen and oxygen increase
C. the quantity of nitrogen monoxide increases
D. the quantities of nitrogen and oxygen remain the same
E. none of the above options
10. $\quad \mathrm{NO}(\mathrm{g})$ and $\mathrm{CO}_{2}(\mathrm{~g})$ react according to the following equation:
$\mathrm{NO}(\mathrm{g})+\mathrm{CO}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{CO}(\mathrm{g})$
In an experiment, 4.00 moles of $\mathrm{NO}(\mathrm{g})$ and 0.900 mole of $\mathrm{CO}_{2}(\mathrm{~g})$ are placed in a $2.00 \mathrm{dm}^{3}$ reaction vessel. At equilibrium, 0.100 mole of $\mathrm{CO}_{2}(\mathrm{~g})$ is present. What is the equilibrium constant, Kc , for the reaction?
A. $\quad 0.500$
B. $\quad 1.60$
C. $\quad 2.00$
D. $\quad 5.00$
E. 5.20
11. Consider the following reaction:
$2 \mathrm{SO}_{3}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$
Initially, $\mathrm{SO}_{3}(\mathrm{~g})$ is placed in an empty flask. How do the rates of the forward and backward reactions change as the system proceeds to equilibrium?

Forward
reaction rate
A Increases
B Increases
C Decreases
D Decreases
E. None of the above

Backward
reaction rate
increases
decreases
decreases
increases
12. The pH of a solution made by dissolving 522 mg of potassium hydrogen phthalate $\left(\mathrm{KHC}_{8} \mathrm{H}_{4} \mathrm{O}_{4}\right)$ in water and diluting to a total volume of $250 \mathrm{~cm}^{3}$ is 4.24. The K_{a} for the phthalate ion $\left(\mathrm{HC}_{8} \mathrm{H}_{4} \mathrm{O}_{4}^{-}\right)$is:
A. $\quad 5.66 \times 10^{-3}$
B. $\quad 5.75 \times 10^{-5}$
C. $\quad 1.02 \times 10^{-2}$
D. 2.54×10^{-2}
E. $\quad 3.26 \times 10^{-7}$
13. For which system does the equilibrium constant, Kc , have units?
A. $\quad \mathrm{C}(\mathrm{s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightleftharpoons \mathrm{CO}(\mathrm{g})+\mathrm{H}_{2}(\mathrm{~g})$
B. $\quad \mathrm{SO}_{3}(\mathrm{~g})+\mathrm{NO}(\mathrm{g}) \rightleftharpoons \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{NO}_{2}(\mathrm{~g})$
C. $\mathrm{Cu}_{2}{ }^{+}(\mathrm{aq})+4 \mathrm{NH}_{3}(\mathrm{aq}) \rightleftharpoons\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}(\mathrm{aq})$
D. $\quad \mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}_{2}(\mathrm{~g})$
E. None of the above.
14. Which of the following buffer compositions of equal volumes can withstand the greatest addition of a $0.050 \mathrm{~mol} \mathrm{dm}^{-3}$ solution of hydrochloric acid before collapsing?
A. $\quad 0.667 \mathrm{M} \mathrm{Ca}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2}$ and $0.217 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}$
B. $\quad 0.909 \mathrm{M} \mathrm{Ca}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2}$ and $0.821 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}$
C. $\quad 0.217 \mathrm{M} \mathrm{Ca}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2}$ and $0.821 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}$
D. $\quad 0.100 \mathrm{M} \mathrm{Ca}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2}$ and $0.909 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}$
E. $\quad 0.217 \mathrm{M} \mathrm{Ca}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2}$ and $0.667 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}$
15. Consider the following reaction at equilibrium at 450 K :
$\mathrm{C}_{2} \mathrm{~A}_{2}(g) \rightleftharpoons \mathrm{C}_{2}(g)+\mathrm{A}_{2}(g) \quad \ldots \ldots \ldots \ldots . \mathrm{K}_{\mathrm{c}}=0.112$
If the same reaction was conducted at 900 K and the new equilibrium constant was found to be twice that of the value of K_{c}, this would imply that:
A. the forward reaction is exothermic
B. an equilibrium constant is inversely proportional to temperature
C. the pressure of this reaction doubled
D. an equilibrium constant is directly proportional to temperature
E. the forward reaction is endothermic
16. Hydroxide ions $\left(\mathrm{OH}^{-}(a q)\right)$ are slowly added to a solution that contains $0.0800 \mathrm{M} \mathrm{Ag}^{+}(\mathrm{aq})$ ions and $0.0800 \mathrm{M} \mathrm{Pb}^{2+}(a q)$ ions. Given that the $\mathrm{K}_{\text {sp }}$ (silver hydroxide $)=1.50 \times 10^{-8}$ and $\mathrm{K}_{\mathrm{sp}}($ lead hydroxide $)=1.90 \times 10^{-13}$, then the molar concentration of the first cation remaining in solution when the second cation starts to precipitate is:
A. $\quad 1.87 \times 10^{-7}$
B. $\quad 1.95 \times 10^{-2}$
C. $\quad 9.73 \times 10^{-3}$
D. $\quad 5.08 \times 10^{-7}$
E. none of the above options
17. Consider the reaction below:
$\mathrm{Cu}^{2+}(\mathrm{aq})+4 \mathrm{CN}^{-}(\mathrm{aq}) \rightleftharpoons \mathrm{Cu}(\mathrm{CN})_{4}{ }^{2-}(a q)$
A volume of $100 \mathrm{~cm}^{3}$ of a $0.0225 \mathrm{~mol} \mathrm{dm}^{-3}$ solution of cupric nitrate was mixed with $150 \mathrm{~cm}^{3}$ of a $0.100 \mathrm{~mol} \mathrm{dm}^{-3}$ solution of potassium cyanide in a single container. The resulting mixture was then allowed to reach equilibrium. If thereafter a volume of $50.00 \mathrm{~cm}^{3}$ of a $0.0025 \mathrm{~mol} \mathrm{dm}^{-3}$ solution of nitric acid was added to the equilibrium mixture, then
A. the concentration of $\mathrm{Cu}(\mathrm{CN})_{4}{ }^{2-}(\mathrm{aq})$ increased
B. the concentration of $\mathrm{Cu}^{2+}(a q)$ increased
C. the concentration of $\mathrm{Cu}(\mathrm{CN})_{4}{ }^{2-}(a q)$ remained unchanged
D. the concentration of $\mathrm{Cu}^{2+}(a q)$ decreased
E. copper (II) nitrate precipitated from the solution
18. The two electrodes $\mathrm{Bi}(s) / \mathrm{Bi}^{3+}(a q)$ ($0.0575 \mathrm{~mol} \mathrm{dm}{ }^{-3}$) and $\mathrm{Cr}(s) / \mathrm{Cr}^{2+}(a q)$ ($0.980 \mathrm{~mol} \mathrm{dm}^{-3}$) were combined to produce a spontaneous electrochemical reaction. The cell potential for this reaction at $25.00^{\circ} \mathrm{C}$ is:
A. $\quad+1.09 \mathrm{~V}$
B. $\quad+1.13 \mathrm{~V}$
C. +1.04 V
D. +1.07 V
E. none of the above options
19. Each of the following transformations takes place at the anode except
A. $\quad \mathrm{Mn}^{2+} \rightarrow \mathrm{MnO}_{2}$
B. $\quad \mathrm{Br}^{-}(\mathrm{aq}) \rightarrow \mathrm{BrO}^{-}$
C. $\mathrm{HO}_{2}^{-} \rightarrow \mathrm{O}_{2}(\mathrm{~g})$
D. $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-} \rightarrow\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-}$
E. none of the above options
20. Which one of the following statements is incorrect?
A. In any voltaic cell the electrons flow from the anode through the external circuit to the cathode.
B. The more positive the value of E^{0} red the greater the driving force for reduction.
C. A positive value of the cell potential indicates a nonspontaneous process.
D. The half-reaction with the smallest (least positive) reduction potential is most easily reversed as an oxidation.
E. In any voltaic cell the anions always migrate toward the anode and cations toward the cathode.
[20 x $3=60]$

SECTION B

QUESTION 1

1.1 Consider the following reaction mechanism:

Step $1 \mathrm{ClO}^{-}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{HOCl}+\mathrm{OH}^{-}$
Step $2 \mathrm{Br}^{-}+\mathrm{HOCl} \rightarrow \mathrm{HOBr}+\mathrm{Cl}^{-}$
Step $3 \mathrm{OH}^{-}+\mathrm{HOBr} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{BrO}^{-}$
1.1.1 Identify the intermediates and the catalysts (if any) in the above mechanism.
1.1.2 Write the overall reaction and the rate law of this reaction.
1.2 Consider the reaction: $2 B \rightarrow C+3 D$. In one experiment it was found that at 300 K the rate constant is $0.134 \mathrm{~L} /(\mathrm{mol} . \mathrm{s})$. A second experiment showed that at 450 K , the rate constant was $0.569 \mathrm{~L} /(\mathrm{mol} . \mathrm{s})$. Determine the activation energy for the reaction.
1.3 Sucrose, $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$ reacts slowly with water in the presence of an acid to form two other sugars, (glucose and fructose) which have the same molecular formulas, but different structures.
$\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$ (sucrose) $+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$ (glucose) $+\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$ (fructose) The reaction is first order and has a rate constant of $6.2 \times 10^{-5} \mathrm{~s}^{-1}$ at $35^{\circ} \mathrm{C}$ when the H^{+}concentration is 0.10 M . Suppose that the initial concentration of sucrose in the solution is 0.40 M . How many minutes will it take for the sucrose concentration to drop to 0.30 M ?
1.4 For the second order reaction:
$2 \mathrm{C}_{4} \mathrm{H}_{6} \rightarrow 1 \mathrm{C}_{8} \mathrm{H}_{12}$
If 35% of the 1.0 M initial concentration has reacted after 2 hours, what is the half-life of the reaction?

QUESTION 2

Given the following reaction:
$\mathrm{COF}_{2}(g) \rightleftharpoons \mathrm{CO}(g)+\mathrm{F}_{2}(g)$
An amount of 7.40 mol of COF_{2} is initially placed into a $15.0 \mathrm{dm}^{3}$ flexible container at 823 K . At the first equilibrium the pressure in the container was found to be $3.53 \times 10^{6} \mathrm{~Pa}$. The pressure was then changed and the reaction was allowed to reach equilibrium for the second time. At the second equilibrium the moles of CO were 25.00% less than those of the first equilibrium.

Calculate the total pressure in the container at the second equilibrium.

QUESTION 3

A buffer solution with a pH of 4.14 contains 0.166 mol of a weak acid and $\mathbf{Z ~ m o l}$ of a salt of its conjugate base. When $175 \mathrm{~cm}^{3}$ of a $0.0420 \mathrm{~mol} \mathrm{dm}^{-3}$ solution of hydrochloric acid was added to this buffer solution the pH changed by 0.360 pH units. Use this information to calculate the value of K_{a} for the weak acid.

QUESTION 4

A mixture is first made of $320 \mathrm{~cm}^{3}$ of a $0.175 \mathrm{~mol} . \mathrm{dm}^{-3}$ solution of silver nitrate and $\mathbf{x ~ c m}{ }^{3}$ of a 1.54 mol. dm^{-3} solution of sodium cyanide. Thereafter, $260 \mathrm{~cm}^{3}$ of a $0.112 \mathrm{~mol} . \mathrm{dm}^{-3}$ solution of sodium iodide is added to this mixture and the resulting solution is diluted to $2.00 \mathrm{dm}^{3}$. Calculate the value of \mathbf{x} that will just prevent the precipitation of silver iodide.

QUESTION 5

The minerals of a 53.3 kg ore sample from a South African mine in Northwest were dissolved by acid leaching to make up a solution whose volume was $25.5 \mathrm{dm}^{3}$. When this solution was analysed it was found to contain 0.224 mol. dm^{-3} of $\mathrm{Cd}^{2+}(a q)$ ions and $0.148 \mathrm{~mol}^{2} \mathrm{dm}^{-3}$ of $\mathrm{Ni}^{2+}(a q)$ ions. The solution was then subjected to electrolysis at $25.0^{\circ} \mathrm{C}$. Calculate the mass percentage impurity of the metal that plated last.

QUESTION 6

The following cell is subjected to electrolysis using a current of 2.00 A for 5.00 hours. Calculate the thickness of the Ni plate if the surface area of the cathode is $100 \mathrm{~cm}^{2}$.

Pt $\left.\left|\begin{array}{l|l}\mathrm{CoCl}_{2}(a q) \\ \left(0.0500 \mathrm{~mol} . \mathrm{dm}^{-3}\right)\end{array}\right| \begin{aligned} & \mathrm{NiCl}_{2}(\mathrm{aq}) \\ & \left(0.0100 \mathrm{~mol} . \mathrm{dm}^{-3}\right)\end{aligned} \right\rvert\, \begin{aligned} & \mathrm{Ni}\end{aligned}$

The half-cell volumes are $1.00 \mathrm{dm}^{3}$ each. The density of nickel is $8.90 \mathrm{g.cm}^{-3}$.

DATA

Avogadro's number: $\mathrm{N}=6.02 \times 10^{23}$
$0^{\circ} \mathrm{C}=273.15 \mathrm{~K}$
Standard pressure $=1 \mathrm{~atm}=101.325 \mathrm{kPa}=760 \mathrm{mmHg}=760$ torr $=1.01325$ bar
$\mathrm{R}=8.31451 \mathrm{~L} . \mathrm{kPa} \cdot \mathrm{K}^{-1} \cdot \mathrm{~mol}^{-1}$
$=8.31451 \mathrm{~J}^{\mathrm{K}} \mathrm{K}^{-1} \cdot \mathrm{~mol}^{-1}$
$=8.31451 \times 10^{-2} \mathrm{~L}$. bar. $\mathrm{K}^{-1} \cdot \mathrm{~mol}^{-1}$
$=8.20578 \times 10^{-2} \mathrm{~L} \cdot \mathrm{~atm} \cdot \mathrm{~K}^{-1} \cdot \mathrm{~mol}^{-1}$
$=62.364 \mathrm{~L}$. torr. $\mathrm{K}^{-1} \cdot \mathrm{~mol}^{-1}$
$F=9.6485 \times 10^{4} \mathrm{C}_{\mathrm{mol}}{ }^{-1}$
$V=J . C^{-1}$

Equilibrium constants ($\mathrm{T}=25.0^{\circ} \mathrm{C}$)
$\mathrm{K}_{\text {sp }}($ Silver lodide, AgI$)=8.3 \times 10^{-17}$
$\mathrm{K}_{\mathrm{f}}\left(\mathrm{Ag}(\mathrm{CN})_{2}{ }^{-}\right)=1.00 \times 10^{21}$
Standard reduction potentials $\left(T=25.0^{\circ} \mathrm{C}\right)$
$\mathrm{E}^{\circ} \mathrm{red}\left(\mathrm{Al}^{3+} / \mathrm{Al}\right)=-1.66 \mathrm{~V}$
E° red $\left(\mathrm{Cd}^{2+} / \mathrm{Cd}\right)=-0.403 \mathrm{~V}$
E° red $\left(\mathrm{Co}^{2+} / \mathrm{Co}\right)=-0.277 \mathrm{~V}$
$\mathrm{E}^{\circ} \mathrm{red}\left(\mathrm{Ni}^{2+} / \mathrm{Ni}\right)=-0.280 \mathrm{~V}$
$\mathrm{E}^{\circ} \mathrm{red}\left(\mathrm{Bi}^{3+} / \mathrm{Bi}\right)=+0.20 \mathrm{~V}$
E° red $\left(\mathrm{Cr}^{2+} / \mathrm{Cr}\right)=-0.91 \mathrm{~V}$

UNIVERSITY OF JOHANNESBURG

Department of Applied Chemistry

3	4
Li	Be
6.941	9.012
11	12
Na	$\mathbf{M g}$
22.99	${ }_{24.303}$
19	20
K	Ca
39.098	40.078
37	38
Rb	Sr
85.47	87.62
55	56
Cs	Ba
132.91	137.33
87	88
Fr	Ra
(223)	226.03

Sc 44.95	${ }^{22} \mathbf{T i}_{47.88}$		${ }^{24} \mathbf{~} \mathbf{~ C r}$	Mn	Fe	Co	Ni	Cu	$\mathbf{Z n}$
39	${ }^{40}$	${ }^{41}$		43	${ }^{4}$	45	46	47	48
$\underset{88.906}{\mathbf{Y}}$	$\mathbf{Z r}$	Nb ${ }_{92900}$	$\underset{95.94}{\text { Mo }}$	$\mathrm{Tc}_{(98}$	$\mathbf{R u}$	Rh	Pd	$\mathbf{A g}$	$\mathbf{C d}$
57	72	${ }^{73}$	${ }^{74}$	75	76	77	78	${ }^{79}$	
La 138.91	$\mathbf{H f}_{178.49}$	Ta 180.95	$\underset{183.85}{\mathbf{W}}$	Re 186.2	$\underset{190.2}{\mathrm{Os}}$	$\mathbf{I r}_{192.22}$	$\mathbf{P t}$	Au 196.97	$\mathbf{H g}$
89									
Ac 227.03									

${ }^{58} \mathrm{Ce}$	${ }^{59} \mathbf{P r}$	$6^{60} \mathrm{Nd}$	${ }^{61} \mathrm{Pm}$	${ }^{62} \mathrm{Sm}$	Eu	${ }^{64} \mathbf{G d}$	Tb	Dy	${ }^{67} \mathbf{H o}$	${ }^{68} \mathrm{Er}$	${ }^{69} \mathbf{T m}$	${ }^{70} \mathbf{Y b}$	$7^{71} \mathbf{L u}$
140.12	140.91	144	146.92	150.36	151.97	157.25	158.93	162.50	164.93	167.26	88.93	173.04	174.9
90		92	93		95		97	${ }^{98}$	99	100	101	${ }^{102}$	${ }^{103}$
Th	$\mathbf{P a}$	$\underset{238.03}{\mathbf{U}}$	Np	$\mathbf{P u}$	Am	$\mathbf{C m}$	Bk ${ }_{24}$	Cf	Es	$\mathbf{F m}$	Md	No	$\underset{\text { (260) }}{\mathbf{L r}}$

