

PROGRAM

: NATIONAL DIPLOMA

ENGINEERING: CIVIL

SUBJECT

REINFORCED CONCRETE AND

MASONRY DESIGN III

CODE

RCM31-1

DATE

WINTER SSA EXAMINATION 2015

23 JULY 2015

DURATION

(SESSION 1) 08:00 - 11:00

WEIGHT

: 40:60

TOTAL MARKS : 158

EXAMINER

: MR C. BRUWER

MODERATOR

: MR. B. RAATH

NUMBER OF PAGES : 4 PAGES

INSTRUCTIONS

: THIS IS A PARTLY OPEN BOOK EXAMINATION:

2 PAGES OF STUDENT'S OWN NOTES

SANS 0100 CODE

COLUMN DESIGN GRAPHS

NO TABLES OR COPIES FROM ANY TEXTBOOK

ALLOWED

: PLEASE ANSWER ALL THE OUESTIONS

REQUIREMENTS

PROGRAMABLE POCKET CALCULATORS ALLOWED.

QUESTION 1

Design the beam in the sketch below by determining the required reinforcement due to flexure and shear.

Point
Load B

Y 16 Bars with hook on ends extending to the end of the beam

A Y25 bars stopping 1m short from end of beam

4 Y25 bars with hook on ends extending to the end of the beam

2m

6m

R12

Y16 O O

R12

300mm

Loads:

- Nominal live Point Load at B = 180kN/m
- Take the own weight of the beam into consideration.

General Information:

- 30/19 Concrete with moderate exposure conditions
- For initial calculations use:
 - o Y25 bars as tension reinforcement, 4 bars extend to the end of the beam
 - o Y16 bars as compression reinforcement
 - o R12 bars as shear reinforcement

(30)

QUESTION 2

Design the retaining wall in the sketch below which retains 2.3m soil by:

- Determine if it is safe for overturning
- Determine if it is safe for sliding
- Determine if the pressure exerted on the supporting soil is within the bearing capacity
- Determine the ultimate moment and ultimate shear forces and calculate the reinforcement for the:
 - o Stem
 - o Heel
 - o Toe

(82)

Design Data:

The soil behind the retaining wall will carry a nominal live load of 3kN/m². Concrete is 30/19 with severe exposure conditions.

Use a safety factor for overturning and sliding as 1.5.

Soil Properties:

- Bearing capacity = 125kPa
- Density = 1680kg/m^3
- Internal angle of friction = 23.5°
- Sliding friction coefficient = 0.4

ULS Safety Factors:

- Concrete = 1.2
- Backfill = 1.4
- Surcharge = 1.6

Assume Y16 bars in the footing and wall.

145

QUESTION 3

Design the reinforcement for a 2m x 3m base as indicated in the figure below by:

- Determine if the maximum soil pressure is exceeded
- Determine the maximum bending moment in both directions
- Determine the flexural reinforcement
- Check if the vertical shear is within limits
- Check if the punching shear is within limits

(46)

The base is covered with 500mm (deep) soil.

The unit weight of the soil is 18kN/m³

Concrete = 30/19 with severe exposure conditions.

Ground bearing capacity = 320kPa

Loads:

Nominal dead point load = 480kN

Nominal live point load = 610kN

• Nominal dead M_x = 41kNm

• Nominal live $M_x = 49kNm$

Assume Y16 bars in both directions.

TOTAL = 158

