

PROGRAM

: NATIONAL DIPLOMA

ENGINEERING METALLURGY

SUBJECT

: PRODUCTION OF IRON AND STEEL

CODE

PRS21-1

DATE

: WINTER SSA EXAMINATION 2015

15 JULY 2015

DURATION

: (SESSION 2) 11:30 - 14:30

WEIGHT

: 40:60

TOTAL MARKS 100

EXAMINER : DR S BHERO

MODERATOR

: DR N NAUDE

5063

NUMBER OF PAGES : 4 PAGES

INSTRUCTIONS : ANSWER ALL QUESTIONS

<u>REQUIREMENTS</u>

: CALCULATOR

QUESTION 1 (40 marks)

The performance of the blast furnace can be inferred from the analysis of products coming out of the furnace. Table 1 shows analysis of top gas, slag and hot metal.

Table 1: Analysis of products of the blast furnace

Top gas	20% CO .	20% CO ₂	4% H ₂	4% H ₂ O	50% N
Slag	29% SiO ₂	11% Al ₂ O ₃	34% CaO	11% MgO	3% S
Hot Metal	3.7% C	1.3% Si	1% Mn	0.09% P	0.03% S

		J40
1.4.2	Increasing sinter charge?	(2)
1.4.1	Tuyere injections?	(2)
1.4	How is the cost of producing iron reduced by:	
1.3.4	What would you do to meet a customer of 0.02 P and 0.002% S steel grade?	(3)
1.3.3	What are the disadvantages of high silicon iron for steel making?	(3)
1.3.2	What are the benefits of high silicon iron for steel making?	(3)
1.3.1	What do the high Si and low S contents indicate about furnace temperature and why?	(3)
1.3	With reference to hot metal analysis:	
	partitioning of sulphur in slag and metal to show why CaO must be high but FeO low in slag.	(3)
1.2.4	From [FeS] + (CaO) = (FeO) + (CaS), explain why tapping has to be a batch process. Use the	
1.2.3	Why is S content high in blast furnace slag while P is low?	(3)
1.2.2	What are the origins of the constituents of slag?	(3)
1.2.1	Calculate the basicity ratio of the slag and comment on its suitability.	(3)
1.2	With reference to slag analysis:	
1.1.6	What may cause a top gas temperature of 700°C and how this problem be corrected?	(2)
1.1.5	· · · · · · · · · · · · · · · · · · ·	(2)
1.1.4	Why is oxygen not in the top gases and what is will give rise to some oxygen in top gases?	(2)
1.1.3	Why is N so high and what is its effect in blast furnace gas as a fuel used to fire the stoves?	(2)
1.1.2	Which one was the main reducing agent in the upper zone and why.	(2)
1.1.1	The efficiency of the reduction process.	(2)
1.1	Comment on the reasons for the following differences pertaining to top gases:	

QUESTION 2 (40 marks)

Table 1: Analysis of slags from Vanderbijlpark amd New Castle

Slag wt%	CaO	SiO ₂	MgO	Al ₂ O ₃	MnO	Fe ₂ O ₃	FeO	Fe	S	P
Vanderbijlpark LD	36	12	10	4	4.8	15.3	12.1	3.9	0.25	2
New Castle LD	35	36	10	13	8				0.2	0.5

Use Table 1 to answer Questions 2.1 - 2.4

2.1	Heing the	data in the	Tabla	ahorra
4.1		uala III uic	Laure	Labove

- 2.1.1 Calculate basicity ratios of LD slag Vanderbijlpark (VBP) and New Castle. (4)
- 2.1.2 Comment on the basicity ratios and their suitability in steel making. (2)

2.2 In view of the basicity ratios in 2.1 and the slag analysis in Table 1:

- 2.2.1 Explain why the phosphorus contents is slags are different. (2)
- 2.2.2 Explain why there was high Fe₂O₃ and FeO in the VBP slag but none in New Castle slag? (2)
- 2.2.3 Sulphur content was low in both slags. (2)

2.3 What could have caused the following?

- 2.3.1 LD slag at Vanderbijlpark contains more silica than at New Castle. (2)
- 2.3.2 LD slag at New Castle contains more Al₂O₃ than at Vanderbijlpark (2)
- 2.3.3 LD slag at Vanderbijlpark contains more Fe than at New Castle (2)
- 2.3.4 Vanderbijlpark slag contains MnO while New Castle does not. (2)

2.4 Comment on the following:

- 2.4.1 The effect slag at New Castle and Vanderbijlpark on the refractory of LD. (2)
- 2.4.2 The type of refractory lining you would recommend for the two plants. (2)

Table 2: Analysis of blast furnace metal and LD blown metal

Constituent	Hot metal	Blown metal		
С	3.8%	0.05%		
Mn	1.2%	0.25%		
Si	0.6%	0.001%		
P	0.09%	0.02%		
S	0.08%	0.02%		

Use Table 2 to answer Questions 2.5 - 2.6

- 2.5 Pertaining to hot metal analysis;
 - 2.5.1 What shows that the LD turn -down temperatures would be low and how is it corrected? (2)
 - 2.5.2 What shows that desulphurisation of hot metal was carried out before LD process? (2)
 - 2.5.3 What shows that the iron making process was inefficient? (2)
 - 2.5.4 Was the carbon catch procedure possible? Give reasons for your answer. (2)
- 2.6 Pertaining to blown metal analysis, what shows that?
 - 2.6.1 The LD process was efficient (2)
 - $2.6.2 \text{ SiO}_2$ is more stable than MnO on the Ellingham diagram. (2)
 - 2.6.3 How can low carbon contents of 0.01% be achieved in steel? (2)
 - 2.6.4 Why is the melting point of blown metal much higher than the melting point of hot metal? (2)

[40]

QUESTION 3 (10 marks)

- 3.1 From of the carbon boil equation; $[C] + [O] = CO_g$.
- 3.1.1 Derive the expression of K and find the [C] as a function of other variables (2)
- 3.1.2 Use your expression in 3.1.1 to derive the conditions for the carbon boil. (2)
- 3.1.3 Explain how the principle of carbon boil in VOD and AOD. (2)
- 3.2 Apart from decarburisation what are the other benefits of VOD and AOD? (2)
- 3.3 Explain how elements such as silicon and manganese in steel affect the carbon boil. (2)

[10]

QUESTION 4 (10 marks)

The reaction; $Fe_3O_4 + C = 3Fe + 4CO$ occurs in the blast furnace.

(4)

- 4.1 Calculate the temperature range for this reaction
- 4.2 In which blast furnace zone does the reaction occur and which other tow reactions occur there? (2)
- 4.3 Explain ways of reducing coke rate and thereby increase productivity of the furnace:

(4) [10]

Thermodynamic data

$$3\text{Fe} + 2\text{O}_2 = \text{Fe}_3\text{O}_4$$
 $\Delta G^0 = -1091060 + 312.8\text{T}$

$$C + \frac{1}{2}O_2 = 2CO_{(g)}$$
 $\Delta G^{\circ} = -111700 - 88T$

$$C + O_2 = CO_{2(g)}$$
 $\Delta G^{\circ} = -394100 - 0.8T$