FACULTY OF SCIENCE FAKULTEIT NATUURWETENSKAPPE

DEPARTMENT OF PHYSICS /DEPARTEMENT FISIKA	
MODULE:	PHY1A3E
CAMPUS	APK
EXAM	02 JUNE 2014

EXAMINER

MODERATOR
DURATION 150 min*

DOOMNULL UNWUCHOLA

Prof. G. HEARNE
MARKS 142

THIS PAPER CONSIST OF 7 PAGES INCLUDING THE COVER PAGE
INSTRUCTIONS: Answer ALL questions

Question 1 [32]

1.1. Using the triple integral to represent the three sides of a cube, derive the moment of inertia of a solid cube with side length 2 a .
1.2. A solid cube of wood of side $2 a$ and mass M is resting on a horizontal surface. The cube is constrained to rotate about a fixed axis $A B$ (Fig. 1.2). A bullet of mass m and speed v is shot at the face opposite $A B C D$ at a height of $4 a / 3$. The bullet becomes embedded in the cube. Find the minimum value of v required to tip the cube so that it falls on face $A B C D$ [Assume $m \lll M$ and use the moment of inertia of the cube as $(8 / 3) M a^{2}$]

Fig. 1.2
1.3. A toy aeroplane of mass 0.5 kg , tied to a thin steel wire 30 m long, moves in a horizontal circle at a constant speed such that the wire is at 40° to the horizontal (Fig. 1.3). The aeroplane goes around a complete circle every 8 s , and the tension in the wire is 6 N . Ignoring the weight of the wire calculate:
(a) The speed of the aeroplane.
(b) The magnitude and direction of the lifting force on the aeroplane. (4)
(c) The strain in steel wire at the elastic limit is 1.5×10^{-3}. What is the smallest diameter of the steel wire necessary if the elastic is not to be exceeded? (Young's modulus of steel $=2.0 \times 10^{11} \mathrm{~N} / \mathrm{m}^{2}$)

Fig. 1.3

QUESTION 1 continues /...
1.4. A wire W_{1} has length L, and diameter d and Young's modulus Y. A ball of mass m is welded to one end. Another wire W_{2} has length 2L, diameter 2d and Young's modulus $\mathrm{Y} / 2$. A ball of mass 2 m is welded to one end. The two wires are suspended vertically, with the free end of W_{1} attached to the ball of W_{2}, as shown in (Fig. 1.4).
(a) Show that the strain in W_{1} is $\varepsilon_{1}=4 \mathrm{mg} / \pi \mathrm{d}^{2} Y$.
(b) Show that the ratio $\varepsilon_{1} / \varepsilon_{2}$ of the strains in the wires is $2 / 3$.

Fig. 1.4

Question 2 [30]

2.1 At the request of the Physiotherapist at the Student Centre, a UJ rugby
player is raising and lowering a weight of 50 N attached to his foot. His leg (together with the foot) has a weight of 40 N . When his leg is at 30° to the horizontal, the patellar ligament is at 50° to the horizontal and the distances to the points of application of the forces from the knee joint Fig 2.1. Calculate:
(a) the tension in the ligament,
(b) the magnitude and direction of the reaction force at the knee joint?

Fig. 2.1

QUESTION 2 continues /...
2.2. In the apparatus shown in Fig. 2.2, S is a hollow sphere of negligible mass and volume $10^{-4} \mathrm{~m}^{3}$. R is a piece of rubber of length 0.10 m and crosssectional area $2.0 \times 10^{-6} \mathrm{~m}^{2}$ attached to the bottom of the container, which is filled with water. Calculate the amount by which the rubber stretches when a mass of 0.15 kg is suspended from the left-hand?
(Young's modulus for rubber $=5 \times 10^{7} \mathrm{Nm}^{-2}$).

Fig. 2.2
2.3. Kepler's second law of planetary motion states that the radius vector drawn from the Sun to a planet sweeps out equal areas in equal time intervals. Drawing detailed diagram(s) were necessary; derive the Kepler's second law of planetary motion?
2.4. Plaskett's binary system consists of two stars that revolve in a circular orbit about a centre of mass midway between them. This statement implies that the masses of the two stars are equal as shown in Fig. 2.4.

2.4.1 Given the orbital speed v and the orbital period T of each star, show that the mass M of each star can be expressed as:

$$
\begin{equation*}
M=2 T v^{3} / \pi \mathrm{G} \tag{8}
\end{equation*}
$$

where G is the universal gravitational constant.

Question 3 [28]

3.1. Verify by direction substitution using differentiation that the following wave functions:
3.1.1 $\mathbf{y}=A \sin (k \mathbf{x}-\omega \mathbf{t})$
3.1.2 $\mathbf{y}=\mathbf{x}^{2}+\mathrm{v}^{2} \mathrm{t}^{2}$
3.1.3 $\mathbf{y}=\ln [\mathrm{b}(\mathbf{x}-\mathrm{vt})]$ where b is a constant
are solutions of the general linear wave equation

$$
\partial^{2} \mathbf{y} / \partial \mathbf{x}^{2}=\left(1 / v^{2}\right) \partial^{2} \mathbf{y} / \partial \mathbf{t}^{2} ;
$$

where the wave number $k=\omega / v$, particle vibration \mathbf{y} is function of both position \mathbf{x} and time \mathbf{t}.
3.2. A vuvuzela blown in a stadium is heard by one football fan at a sound level of 40 dB and by another at 65 dB . How many times further away from the vuvuzela is the first fan? Assume that the intensity follows an inverse square law.
3.3 An object of density ρ is released from rest from a depth d below the below the surface of a liquid of density ρ_{0}. As $\rho<\rho_{0}$ and so the body rises to the surface. Show that the object reaches the surface with a speed v given by

$$
\begin{equation*}
v=\sqrt{\left[2 d g\left(\rho_{0-} \rho\right) / \rho\right]} \tag{6}
\end{equation*}
$$

(where g is the acceleration due to gravity)

Question 4 [29]

4.1. Shown in Fig. 4.1 is the pulse of a small element of a taut string of length Δs moving to the left with speed \mathbf{v}. Assuming that the pulse height is small relative to the length of the string, and the tension \mathbf{T} is the same at all points on the string, show by derivation and also detailing your diagram that the speed \mathbf{v} of the pulse traveling along the string is:

$$
\begin{equation*}
\mathbf{v}=\sqrt{ }(\mathbf{T} / \mu) \tag{10}
\end{equation*}
$$

where \mathbf{T} is the tension on the string and μ the mass per unit length

Fig. 4.1

4.2. Fig. 4.2 shows a closed tank connected to a pipe of constant cross-sectional area (which is small compared with that of the tank). The gauge pressure above water in the tank (i.e. above point 1) is maintained at a constant pressure of $2 \times 10^{5} \mathrm{~Pa}$. A vertical pipe above point 2 contains a water column of constant height $h=1.5 \mathrm{~m}$. Calculate:
(a) the velocity of the water at point 2 ,
(b) the height, y , of point 3 where the gauge pressure is zero.
(c) If the pipe were punctured at point 4 explain whether the air would leak in or water leak out? (Water density $=1000 \mathrm{~kg} / \mathrm{m}^{3}$).

Fig. 4.2

Question 5 [23]

5.1 A clock with brass pendulum keeps correct time when the temperature is $10^{\circ} \mathrm{C}$. What will be the error in the time recorded by the clock if it placed for 1 week in a room at a constant temperature of $20^{\circ} \mathrm{C}$?

$$
\begin{equation*}
\left[\alpha_{\text {brass }}=1.9 \times 10^{-5}{ }^{\circ} \mathrm{C}^{-1} \text { and }(1+\mathrm{x})^{1 / 2} \sim(1+\mathrm{x} / 2) \text { if } \mathrm{x} \lll 1\right] \tag{11}
\end{equation*}
$$

5.2 Pop star Miley Cyrus performs a strip on a wrecking ball. Initially she has a rate generation of metabolic heat of 120 W , and is completely clad in a garment of emissivity $e=0.3$. She evaporates perspiration to keep her temperature constant. At the end the metabolic rate has risen to 200 W , and she had shed the garment, so that $e=1$. What extra volume of perspiration must she now evaporate per second to keep her body temperature constant? [The surrounding temperature remains constant at $35{ }^{\circ} \mathrm{C}$, and her skin temperature (and that of the garment, which is thin) at $25^{\circ} \mathrm{C}$.]
Her surface area is $1.5 \mathrm{~m}^{2}$, the density of perspiration is $10^{3} \mathrm{kgm}^{-3}$.
latent heat of sweat evaporation $=2.5 \times 10^{6} \mathrm{Jkg}^{-1}$.
$\sigma=5.67 \times 10^{-8} \mathrm{Wm}^{-2} \mathrm{~K}^{-4}$.

END

