

FACULTY OF SCIENCE

DEPARTMENT OF MATHEMATICS
NATIONAL DIPLOMA IN ENGINEERING: MINERAL SURVEYING/EXTRACTION METALLURGY

MODULE MNM31-1
NUMERICAL METHODS
CAMPUS DFC
JUNE 2014 EXAMINATION

DATE: 02/06/2014
SESSION: 12:30-15:30

ASSESSOR
MS BP NTSIME
MR PG DLAMINI

INTERNAL MODERATOR
DR PRENTICE JSC

DURATION: 3 HRS
MARKS: 80 MARKS

SURNAME \& INITIALS:

STUDENT NUMBER:

COURSE:

CONTACT NO:

[^0]REQUIREMENTS:

Question 1

a) From the graph of $f(x)=3 x+\sin x-e^{x}$, find values of a and b such that $f(a) f(b)<0$.
b) Use the following methods to find the root of f within a tolerance criterion $|f(x)|<10^{-6}$, determining the number of iterations required
(i) Regula Falsi method with the values of a and b as found above
\square
(ii) the Newton-Raphson method with $x_{0}=0.5$

Question 2

a) (i) Use the built-in Mathematica solver to solve the following system of equations.

$$
\begin{aligned}
& 2 x_{1}-x_{2}=2 \\
& x_{1}-3 x_{2}+x_{3}=-2 \\
& -x_{1}+x_{2}-3 x_{3}=-6
\end{aligned}
$$

(ii) Compute the condition number of the matrix A with respect to the infinity norm. Is A illconditioned?

$$
A=\left[\begin{array}{ll}
4.5 & 3.1 \\
1.6 & 1.1
\end{array}\right]
$$

b) Consider the data presented in the table below

x_{i}	f_{i}
0	0.0674
0.5	-0.9156
1.0	1.6253
1.5	3.0377
2.0	3.3535
2.	7.9409

(i) Find the polynomial of highest possible degree that interpolates f.
(ii) Find the polynomial of degree $2, P_{2}(x)$, that best fits the data in the least squares sense.
(iii) Graph the interpolating polynomial, P_{2} and the data points on the same axes.
[10]

Question 3

a) Solve the following system on linear equations using the Gauss Seidel method. Terminate iterations when the infinity norm of the residual is 10^{-6}. Use the ZERO vector as starting value.

$$
\begin{align*}
& 4 x_{1}-x_{2}-x_{3}=3 \tag{10}\\
& -2 x_{1}+6 x_{2}+x_{3}=9 \\
& -x_{1}+x_{2}-7 x_{3}=-6
\end{align*}
$$

Question 4

Solve the set of non-linear equations

$$
x^{3}+y=1 \quad \text { and, } y^{3}-x=-1
$$

using Newton's method with starting values for $x_{0}=0.5$ and $y_{0}=0.5$. Terminate the method when
$\|f(x)\|_{\infty}<10^{-4}$.

Question 5

5.1 Use Simpson's rule to approximate

$$
\int_{1}^{7} \frac{\sqrt{x-1}}{x} d x
$$

using 20 sub-intervals
[10]

5.2 Use Euler's method with a step size of $h=0.2$ to find an approximate solution of the following IVP

$$
\begin{equation*}
y^{\prime}+2 y=2-e^{x}, \quad y(0)=1 \tag{10}
\end{equation*}
$$

over $0 \leq x \leq 5$.

[^0]: INSTRUCTIONS : ANSWER ALL QUESTIONS BY CREATING APPROPRIATE MATHEMATICA CODES
 NO EXTERNAL STORAGE DEVICES ARE PERMITTED NON-PROGRAMMABLE SCIENTIFIC CALCULATORS ALLOWED

