

DEPARTMENT OF MATHEMATICS

NATIONAL DIPLOMA IN ENGINEERING: MINERAL SURVEYING/EXTRACTION METALLURGY

> MODULE MNM31-1 NUMERICAL METHODS CAMPUS DFC

JUNE 2014 EXAMINATION

DATE: 02/06/2014

SESSION: 12:30 - 15:30

ASSESSOR

INTERNAL MODERATOR

DR PRENTICE JSC

MR PG DLAMINI

MS BP NTSIME

DURATION: 3 HRS MARKS: 80 MARKS

SURNAME & INITIALS:

STUDENT NUMBER:

COURSE:

CONTACT NO:

INSTRUCTIONS : ANSWER ALL QUESTIONS BY CREATING APPROPRIATE MATHEMATICA CODES NO EXTERNAL STORAGE DEVICES ARE PERMITTED NON-PROGRAMMABLE SCIENTIFIC CALCULATORS ALLOWED REQUIREMENTS: FORMULA BOOKLET

Question 1

a) From the graph of $f(x) = 3x + \sin x - e^x$, find values of a and b such that f(a) f(b) < 0.

[5]

[10]

b) Use the following methods to find the root of f within a tolerance criterion $|f(x)| < 10^{-6}$, determining the number of iterations required

(i) Regula Falsi method with the values of a and b as found above [10]

(ii) the Newton-Raphson method with $x_0 = 0.5$

Question 2

a) (i) Use the built-in *Mathematica* solver to solve the following system of equations.

 $2x_1 - x_2 = 2$ $x_1 - 3x_2 + x_3 = -2$ $-x_1 + x_2 - 3x_3 = -6$ [3]

(ii) Compute the condition number of the matrix A with respect to the infinity norm. Is A ill-conditioned?

[10]

$$A = \begin{bmatrix} 4.5 & 3.1 \\ 1.6 & 1.1 \end{bmatrix}$$

[2]

b) Consider the data presented in the table below

x_i	f_i
0	0.0674
0.5	-0.9156
1.0	1.6253
1.5	3.0377
2.0	3.3535
2.	7.9409

(i) Find the polynomial of highest possible degree that interpolates f.

(ii) Find the polynomial of degree 2, $P_2(x)$, that best fits the data in the least squares sense.

(iii) Graph the interpolating polynomial, P_2 and the data points on the same axes.

[10]

Question 3

a) Solve the following system on linear equations using the Gauss Seidel method. Terminate iterations when the infinity norm of the residual is 10^{-6} . Use the ZERO vector as starting value.

```
4x_1 - x_2 - x_3 = 3
-2x_1 + 6x_2 + x_3 = 9
-x_1 + x_2 - 7x_3 = -6
```

Question 4

Solve the set of non-linear equations

 $x^3 + y = 1$ and, $y^3 - x = -1$

using Newton's method with starting values for $x_0 = 0.5$ and $y_0 = 0.5$. Terminate the method when

$$\|f(x)\|_{\infty} < 10^{-4}.$$
 [10]

<u>Question 5</u> 5.1 Use Simpson's rule to approximate

$$\int_1^7 \frac{\sqrt{x-1}}{x} \, dx$$

using 20 sub-intervals

[10]

5.2 Use Euler's method with a step size of h = 0.2 to find an approximate solution of the following IVP

$$y' + 2 y = 2 - e^x$$
, $y(0) = 1$

over $0 \le x \le 5$.

[10]