

FACULTY OF SCIENCE

	Examiner	Moderator
Paper 1 30 marks		
Paper 2 70 marks		
EM/100		

	Examiner	Moderator
SM		
EM		
FM		

DEPARTMENT OF APPLIED PHYSICS AND ENGINEERING MATHEMATICS
NATIONAL DIPLOMA IN ENGINEERING:
ELECTRICAL

MODULE CAMPUS

DFC

MAT3AW3 ENGINEERING MATHEMATICS 3 (Paper 2)

MAY EXAMINATION 2014

DATE: :	31/5/2014
---------	-----------

SESSION: 12:30 - 15:30

ASSESSOR:

MRS E KIRCHNER

MODERATOR:

DR Q VAN DER HOFF

DURATION: 3 HOURS

FULL MARKS: 100

SURNAME AND	
INITIALS	
STUDENT NUMBER	
CONTACT NUMBER	
LECTURER	

NUMBER OF PAGES:

15 PAGES

REQUIREMENTS:

MATHEMATICS INFORMATION BOOKLET

Instructions:

- Please fill in your particulars on the front page.
- Answer all the questions in the space provided.
- Do not write in pencil. Pencil will not be marked.
- You may use the back of each page (i.e. the left-hand side) for rough work OR to complete a question.
- Please indicate rough work as such.
- Rough work will not be marked.
- One non programmable calculator is permitted.
- Information booklets may be used.
- PLEASE CHECK THAT YOU HAVE RECEIVED 15 PAGES.

QUE	STION 1	
1.1		(3)
_		(0)
	-	
-		
_		
1.2	subject to the indicated initial con-	lve the given differential equations, ditions:
	1	x(0) = 0 and $x'(0) = 0$ (3)
		

1.2.2	0.3y''(t) + 1.8y'(t) + 5.1y(t) = 0,	y(0) = 1 and $y'(0) = 5$	(6)
			_
		-	_
-			
		<u> </u>	 .
			
			_ .
· .			
<u>-</u>			
	-		
		<u> </u>	
-			
		-	
 -			
_			
	_		
			_
. <u>.</u>			-

1.2.3	$\frac{d^2y}{dx^2}$	$-7\frac{dy}{dx}$	-6 <i>y</i> = 5e	$x + \delta(x - \frac{1}{2})$	4), <i>y</i> (0)	= 0 and	y'(0) = 0)	(13)
_								-	
, 			_					•	
						_			
	<u>_</u>			_					
									<u>_</u>
-									
_				_					_
<u>.</u>		_		<u>-</u>	<u></u>			_	
					,.				_
_		_	<u>_</u>		_				
			_					<u>.</u>	
	<u> </u>		_		<u> </u>				
<u> </u>	<u>_</u>			-	_		<u> </u>		
					<u></u>				
				-	_		-		
							<u>,</u>		
- .				_	_	_	_	<u> </u>	_
	_						<u>-</u>		.
<u>-</u>							<u> </u>		
			<u> </u>						
				_	_				

QUESTION 2

2.1 An electrical circuit consists of a capacitor, C farads and an inductor, L henries, in series, to which a voltage $E \sin \omega t$ is applied.

Use the Laplace transform to find the charge Q on the capacitor if it is given that

$$Q = \mathbf{Z}^{-1} \left\{ \frac{E}{L\left(\omega^2 - \frac{1}{LC}\right)} \left(\frac{\omega}{p^2 + \frac{1}{LC}} - \frac{\omega}{p^2 + \omega^2} \right) \right\}$$

(E, L, C and ω are constants)	(2)
	

2.2 The horizontal motion of a certain mass is modelled by the following differential equation.

$$2\frac{d^2x}{dt^2} + 8x = 8H(t-3),$$
 $x(0) = 10$ and $x'(0) = 0$

 Use the Laplace transform to find the position (x) of the mass at a time t.		
	_	

ENGINEERING MATHEMATICS 3 (MAT3AW3) MAY EXAMINATION 2014

2.3 Given: f(t) = 70[t - (t-1)H(t-1)]

Sketch the graph of f(t) for $t \ge 0$.

(2)

2.4 The graph below is defined analytically by

$$f(t) = \begin{cases} -7t \\ -21 \end{cases}$$

$$0 \le t < 3$$

Express f(t) in terms of Heaviside functions. (3)

\sim	JES	TIA	NI 0
		11 16 1	INI "4
w	-		

Find the general solution of the following differential equations, using **D-operator methods**.

3.1	$\frac{d^2y}{dt^2} - 16y = 24e^{4t}$			(7)
		8	•	
	_			
			<u>-</u>	
		_		
		<u></u> .		

3.2	$\frac{d^2x}{dt^2} + 12x = 2\sin\sqrt{3}t\cos\sqrt{3}t$			(5)
		<u> </u>		
				
_			· · · · · · · · · · · · · · · · · · ·	
		-36		
				
		<u>_</u>		
		_		
	 			
			<u> </u>	
_		-	.	

3.3	$y''+3y'-10y = x\left(e^x + \frac{50}{x}\right)$	(8)
	· · · · · · · · · · · · · · · · · · ·	
_		
<u>.</u>		
_		

QUESTION 4

In an LRC series circuit the differential equation is given as 4.1

$$\frac{1}{2}\frac{d^2q}{dt^2} + 10\frac{dq}{dt} + \frac{q}{0.01} = 150$$

4.1.1 Use **D-operator methods** to find the charge q at any time t.

(4) 4.1.2 What is the charge (q) after a long time? Discuss. (1)

4.2	An RC circuit has an emf given (in volts) by 200 sin 2t, a resistance
	of 50 Ω, a capacitance of 0,02 F.

The model of the differential equation is given by

$$50\frac{dq}{dt} + \frac{q}{0,02} = 200\sin 2t$$

- 4.2.1 Use **D-operator methods** to find the **general solution of the** charge q at any time t
- 4.2.2 Find an equation for the current i (Hint: $i = \frac{dq}{dt}$)
 4.2.3 Rewrite the steady state current in the form $i \in \mathbb{R}$ (1)

	4.2.3	Rewrite	the steady	state cu	urrent in t	he form	$t = R \sin(2t)$	$2t\pm\alpha$) (2))
	-				<u>-</u>				_
			<u></u> _	<u>.</u>			_		_
			-	-	<u></u>	<u>_</u> _			_
	_		_	<u>,</u>					
			<u>-</u>	<u>_</u>	-			<u>_</u>	
			<u>-</u>		<u>-</u>		-		
	_								
					-				
		_							
	_	_	-	_	<u> </u>	<u> </u>	<u>_</u>		_
	_		-		_				_
							<u>.</u>		_
_			<u> </u>			.		_	_
				-					_
			<u></u>	_					
							·		
									_
			_			.	<u> </u>		_
					-				_

4.3 Given the following system of simultaneous differential equations:

$$\frac{dy}{dt} + 2\frac{dx}{dt} + y - x = 25$$
$$2\frac{dy}{dx} + x = 25e^{t}$$

Use D – operator methods to solve for y ONLY.		
	_	
	·-	
	<u> </u>	
	_	
	· -	
· · · · · · · · · · · · · · · · · · ·	_	
	_	

QUESTION 5

$$f(x) = \begin{cases} 0 & -2 \le x < 0 \\ -0.8x & 0 \le x \le 2 \end{cases}$$

$$[f(x) = f(x+4)]$$

Determine ONLY the cosine terms in the Fourier expansion of this function.

idiotion.	(0)
	_
<u> </u>	
	- -
	- -
	_
	-
	-
	

5.2	Determine a half range Fourier sine series to represent the function $f(x) = 5 - x$ $(0 \le x \le 5)$ if it is given that $f(x) = f(x + 10)$		
		(6)	
		_	
1			
i			
		_	
		<u>-</u> .	
		_ _ _	
		_	
		_	
		[12]	

TOTAL: 100