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Question 1 [8 marks]

For questions 1.1 – 1.8, choose one correct answer, and make a cross (X) in the correct block.

Question a b c d e

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8

1.1) Which one of these curves has a vertical asymptote? [1]

a) y = tan−1 x

b) y =
√
x

c) y = lnx

d) y = ex

e) None of the above.

1.2) The simplified form of e
√
ln e +

√
ln ee is: [1]

a) e+
√
e

b) 2
√
e

c) 2

d)
√

(ln e)2

e) None of the above.

1.3) The conditional proposition p→ ¬q can be rewritten as an “or” formula as follows: [1]

a) ¬p ∨ q

b) p ∨ q

c) ¬p ∨ ¬q

d) p ∨ ¬q

e) None of the above.
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1.4)
d

dx

[
ln(2) log2(x

2)
]

= [1]

a)
2

x

b)
ln(2)

2x

c)
4

x ln(2)

d)
2 ln(2)

x log 2

e) None of the above.

1.5)
d

dx

[
arctan(cotx)

]
= [1]

a) 1

b) − cscx

c) −1

d) cscx

e) None of the above.

1.6) Let f be a continuous function on the closed interval [0,2] . If 2 ≤ f(x) ≤ 4, then the

greatest possible value of

∫ 2

0

f(x) dx is [1]

a) 0

b) 2

c) 4

d) 8

e) None of the above.

1.7) Which of the following is a tautology? [1]

a) ¬A ∧ (¬B ∨ C)

b) ¬A ∨ ¬B

c) ¬(¬A ∧ A)

d) A→ (B ∧ C)

e) None of the above.
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1.8) Suppose that f is an integrable function and that

∫ 1

0

f(x) dx = 2,

∫ 2

0

f(x) dx = 1 and∫ 4

2

f(x) dx = 7. Then

∫ 4

0

f(x) dx = [1]

a) -1

b) 5

c) 8

d) 6

e) None of the above.

Question 2 [3 marks]

a) Solve for x ∈ R:
x− 3

x− 2
≤ 0 [2]

b) Find all x ∈ [0,
π

2
] that satisfy the inequality cos x < sinx. [1]
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Question 3 [5 marks]

Let z = 1 + i and w = 1−
√

3.

a) Write z and w in polar form. [2]

b) Find
z

w
and leave your answer in polar form. [1]

c) Find z10 and leave your answer in polar form. [2]

Question 4 [6 marks]

a) Translate the following sentence into first-order language: [2]

“All dogs wear hats only if not all dogs wear shoes”.
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b) Show that an implication p → q is logically equivalent to its contrapositive (without using
truth tables). [2]

c) Use a direct proof to show that the square of any perfect square is a perfect square. [2]

Question 5 [4 marks]

a) Use transformations to sketch the graph of y = − cos(x + π) within the interval [0, π]. Show
each step. [2]
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b) Determine whether f(x) =
1

tanx
is even, odd or neither. [2]

Question 6 [4 marks]

Given: f(x) = ln(x3 − 3)

a) Show that f is a one-to-one function (without sketching the graph). [2]

b) Find f−1(x) [2]
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Question 7 [7 marks]

Given:

f(x) =


3x2 if x ≤ 1

4− x if 1 < x ≤ 4

−1 if 4 < x ≤ 7

(x− 7)2 − 1 if x > 7

a) Prove that f is continuous at x = 1 [3]

b) What kind of discontinuity is at x = 4? [1]

c) Show that f is differentiable at x = 7. [3]
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Question 8 [3 marks]

Find the limit: lim
x→−∞

√
4x2 − 9

3x+ 2
[3]

Question 9 [4 marks]

Prove the Product Rule of Differentiation: [4]

If f(x) and g(x) are both differentiable, then
d

dx

[
f(x).g(x)

]
= g(x).

d

dx
f(x) + f(x).

d

dx
g(x)
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Question 10 [3 marks]

Use the definition of the derivative to prove that
d

dx
sinx = cosx. [3]

(You DO NOT need to prove the special limits lim
h→0

sinh

h
= 1 and lim

h→0

cosh− 1

h
= 0.)

Question 11 [4 marks]

a) Find y′ if ex+y = y2 − cosx. [2]

b) Find g′(t) if g(t) = (sec t+ tan t)5 [2]
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Question 12 [2 marks]

Prove the following hyperbolic identity: cosh2 x− sinh2 x = 1 [2]

Question 13 [3 marks]

Evaluate the limit. Use L’Hospital’s rule if necessary: lim
x→0+

(tan 4x)3x [3]
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Question 14 [3 marks]

Find f(x) if f ′′(x) = − cosx+ 6 and f(0) = 3 and f(π) = 1. [3]

Question 15 [4 marks]

a) State the Fundamental Theorem of Calculus Part 1. [2]

b) Using a) above, calculate:
d

dx

∫ x2

3

1

t
dt [2]
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Question 16 [7 marks]

Evaluate the following integrals if they exist:

a)

∫ (
1−
√
u√

u
+ sec2 u

)
du [2]

b)

∫ 3

1

x.ex
2

dx [2]

c)

∫ 3

0

| x2 − 4 | dx [3]


