

UNIVERSITY OF JOHANNESBURG UNIVERSITEIT VAN JOHANNESBURG

DEPARTMENT OF ECONOMICS AND **ECONOMETRICS**

JUNE/JULY SUPPLEMENTARY EXAMINATION 2014

Course / Kursus:

Econometrics / Ekonometrie 2A01

Paper / Vraestel:

Statistics for Economists

Examiners / Eksaminatore:

Statistiek vir Ekonome

Dr J Muteba Mwamba

Mr JJ Kouadio

Time:

180 min

Marks:

130

Instructions:

1. Answer all questions

2. This paper consists of 15 pages

- 3. An Excel workfile is provided with 2 sheets. Use the Excel file provided for
- 4. Please round off all quantitative answers to 4 decimal places
- 5. Some formulae and tables are provided in Appendix

Initials & Surname:	·
Student number:	

SECTION/AFDELING	TOTAL TOTAAL	/	MARK PUNTE	
A	28			
В	33	\dashv		
С	17	\dashv		
D	22	\dashv		
E	10	\dashv		
F	20	+		
TOTAL	130	+		

				<u>A:</u>																		[28 n	narks]
(2)	mo	vei irk	s ea	the ich)	f	olla	win	g	th	eory	v	by	pr	ovi	ding	7	а	clea	ar	ana	l	correct	answer
	1. 		Vha 	t is	the 	di <u>f</u> 	fere 	nce	: be	twe	en c	cont	inuc 	ous	and 	dis	'cre 	te ra	ande	0m v	aric 	able? 	
	2. 	D	 isti: 	 ngu 	ish	mu 	 tuai 	'ly e 	excl	usiv	e e	 veni	's fr	om .	inde	per	ndei	nt ev	 vent	s?			
3	 }.	Gi	ve i	'wo	mo	 st i	 mpo		nt p	rop	erti	es o	 of pi	roba	 ubili	ty n	 nea	sure	 s:?				
 4.		Ent	ume ime	rate tric	 e th ?	ree	me	 asu	 res	of c	ent	ral	 tenc	lenc	 y th	eat d	 are	 equ	 al и	 hen	 the	distribu	ttion is
5.	И		t is	an	 out	 lier	· ob	 ser	 vati	 on?													
6.	W	hai	is	 	 the	 	 	 for	the	: : alt	 	 	 hyp	othe	 ?sis?	 							

7. What is the third step in hypothesis testing?

8. What is a residual in regression analysis?
9. What do we call a statement about the value of a population parameter?
10. As the sample size increases, the curve of the t-distribution approaches the ?
11. If the absolute value of the computed value of the test statistic exceeds the critical value of the test statistic, what is our decision?
12. What is the difference between the null hypothesis and the alternative one?
13. What is a type I error in hypothesis testing?

. 14. What is the difference between a statistic and a parameter?	
<u>SECTION / AFDELING B</u> : Probability	[33 marks]
Answer the following questions and show all your calculations by using	Excel or formulas.
1. $P(A_1) = 0.20$, $P(A_2) = 0.40$ and $P(A_3) = 0.40$. $P(B_1 A_1) = 0.25$, $P(B_1 A_3) = 0.10$.	$P(B_1 A_2) = 0.05 \text{ and}$
Use Bayes' theorem to determine $P(A_3 B_1)$.	[3 marks]
2. 2. Let $P(x)$ be a probability distribution defined by; $P(x) = \begin{cases} \frac{x}{3}; & \text{for } x = 0, 1, \text{ and } 2, \\ 0 & \text{otherwise} \end{cases}$	[9 marks]
(a) Show that $P(x)$ is indeed a probability distribution	
(b) Calculate the mean	
(c) Calculate the standard deviation	

3. In southern California, a growing number of persons pursuing are choosing paid internships over traditional student teaching peight candidates for three local teaching positions consisted of had enrolled in paid internships and three candidates who had estudent teaching programs. Assume that all eight candidates are the position. Let x represent the number of internship-trained hired for these three positions.	programs. A group of f five candidates who prrolled in traditional
a) Does x have a binomial distribution or a hypergeometric distribution or a hypergeometric distribution.	tion? Support your [2 marks]
b) Find the probability that three internship-trained candidates are h positions.	ired for these [2 marks]
c) What is the probability that none of the three hired was internship-	trained? [2 marks]
d) Find $P(x \le 1)$.	[2 marks]
4. A pollster randomly selected 4 of 10 available people. How many of marks]	different groups of [3

. 5	. The diameters of Douglas firs grown at a Christmas to distributed with a mean of 4 inches and a standard de	ree farm are normal viation of 1.5 inches	lly S.
a, 		han 3 inches?	
b)	the trees will not fit in your Christmas tree stand?		[3 marks]
6. a)	A salesperson makes six calls. Each call is a success o probability of success equal to 0.3. What is the probability that the salesperson will make 3	r a failure, with the	
b)	What is the probability that the salesperson will make a	t least 2 successful o [2 marks]	calls?
	ON / AFDELING C: ANOVA we the three assumptions of the ANOVA technique.	[17 mark [3 mar	-

	P. What are the criter	ria for the lar 					
3.	. What are the chara			stribution?			[5 marks]
4.	A company has fou whether there is a following data are the way ANOVA to deter ages of the workers solution.	he ages of ra rmine wheth at the four	r dveragindomly er there r plants. 7 marks j 2 32 33 31 34 30	ge age oj selected w is a signi Use α =	workers vorkers at ficant diff =0.01 and	at the four each plant.	r locations. The Perform a one
			28				

SECTION D: Confidence Interval 1. A study is being conducted in a company that has 800 engineers. A nathese engineers reveals that the average sample age is 34.30 y population standard deviation of the age of the company's engineer years. Construct a 98% confidence interval to estimate the average age this company.	rears. Historically the ers is approximately & e of all the engineers in [5 marks]
1. A study is being conducted in a company that has 800 engineers. A rethese engineers reveals that the average sample age is 34.30 y population standard deviation of the age of the company's engineer years. Construct a 98% confidence interval to estimate the average age this company.	random sample of 50 of ears. Historically the ers is approximately to go f all the engineers in [5 marks]
population standard deviation of the age of the company's enginee years. Construct a 98% confidence interval to estimate the average age this company.	rears. Historically the ers is approximately of all the engineers in [5 marks]
The owner of a large equipment company wants to make a rather of verage number of days a piece of ditch digging equipment is rented out the company has records of all rentals, but the amount of time required all accounts would be prohibitive. The owner decides to take a rand voices. Fourteen different rentals of ditch diggers are selected randed that the following data. Use these data to construct a 99% confidence average number of days that a ditch digger is rented and assume that rental is normally distributed in the population:	t per person per time. If to conduct an audit If the sample of rental If the files,
3 1 3 2 5 1 2 1 4 2 1 3 1 1	[5 marks]

3. A study of 87 selected companies with a telemarketing operation revealed that 39% of the sampled companies had used telemarketing to assist them in order processing. Using this information, construct a 95% confidence interval of the population proportion of telemarketing companies that use telemarketing operation to assist them in order processing [5 marks]
4. A sample of 87 professional working women showed that the average amount paid annually into a private pension fund per person was \$3343, with a sample standard deviation of \$1226. A sample of 76 professional working men showed that the average amount paid annually into a private pension fund per person was \$5568, with a sample standard deviation of \$1716. A women's activist group wants to "prove" that women do not pay as much per year as men into private pension funds. If they use an alpha of 0.001 and these sample data, will they be able to reject a null hypothesis that women annually pay the same as or more than men into private pension funds? (Show all steps).

	es:
SECTION / AFDELING E: Descriptive Statistics [10 marks]	,
Use the data in provided in the Event file warmed "Events a warmer	
Use the data in provided in the Excel file named: "EKM2A JUNE 2014 SUP EXA	V
data.xls"	
The final marks (in percentage) for a group of Econometrics 2A students are given. Use the necessary descriptive statistics and a histogram to answer the following questions:	ıe
l. Comment on the central tendency of the given marks by interpreting the relevant statistics. [3 marks]	
	,

<i>2</i> .	Use the empirical rule to comment on the distribution of this sample.	
3.	Interpret the first class of the histogram by referring to the bin, the j cumulative frequency and what exactly each of those means for this spec	frequency and the cific sample. [3 marks]
	Above which value was the marks 75 % of the time?	
<u>SE</u>	CTION / AFDELING F: Regression	20 marks]
	e the data provided in the Excel file named: "EKM2A JUNE 20 'a.xls"	014 SUP EXAM
	nsider Keynes' marginal propensity to consume (the rate of consumpting in income $=>0$ and <1):	tion for one unit
	What is the dependent?	
	Vhat is the independent variable?	[4 marks]

3. Run the regression model; report and interpret the coefficient of independent	variable? [8 marks]
4. Report and interpret the coefficient of determination?	[3 marks]
5. Is the independent variable statistical significant?	[3 marks]
Good Luck	

Appendix: Some Formulas

$$GM = \sqrt[n]{(X_1)(X_2) \cdot \cdot \cdot (X_n)}$$

[3-4]

POPULATION VARIANCE

$$\sigma^2 = \frac{\Sigma (X-\mu)^2}{N}$$

[3-8]

ARITHMETIC MEAN OF GROUPED DATA

$$\overline{X} = \frac{\sum fM}{n}$$

[3-12]

where:

X is the designation for the sample mean.

is the midpoint of each class.

is the frequency in each class.

fM is the frequency in each class times the midpoint of the class.

 ΣfM is the sum of these products.

is the total number of frequencies.

STANDARD DEVIATION, GROUPED DATA

$$s = \sqrt{\frac{\sum f(M - \overline{X})^2}{n - 1}}$$

[3-13]

where:

s is the symbol for the sample standard deviation.

M is the midpoint of the class.

f is the class frequency.

n is the number of observations in the sample.

 \overline{X} is the designation for the sample mean.

GENERAL RULE OF MULTIPLICATION P(A and B) = P(A)P(B|A)

$$P(A \text{ and } B) = P(A)P(B|A)$$

[5-6]

BAYES' THEOREM

$$P(A_i|B) = \frac{P(A_i)P(B|A_i)}{P(A_1)P(B|A_1) + P(A_2)P(B|A_2)}$$

[5-7]

MULTIPLICATION FORMULA

Total number of arrangements = (m)(n)

[5-8]

$$_{n}P_{r}=\frac{n!}{(n-r)!}$$

[5-9]

where:

n is the total number of objects.

r is the number of objects selected.

Combination : nCr = $\frac{n!}{r!(n-r)!}$

MEAN OF A PROBABILITY DISTRIBUTION

$$\mu = \Sigma[xP(x)]$$

I6-1

VARIANCE OF A PROBABILITY DISTRIBUTION

$$\sigma^2 = \sum [(x - \mu)^2 P(x)]$$

[6-2]

BINOMIAL PROBABILITY FORMULA

$$P(x) = {}_{0}C_{x} \pi^{x}(1 - \pi)^{n-x}$$

[6-3]

where:

C denotes a combination.

n is the number of trials.

x is the random variable defined as the number of successes.

 π is the probability of a success on each trial.

MEAN OF A BINOMIAL DISTRIBUTION

$$\mu = n\pi$$

[6-4]

VARIANCE OF A BINOMIAL DISTRIBUTION

$$\sigma^2 = n\pi(1-\pi)$$

[6-5]

HYPERGEOMETRIC DISTRIBUTION

$$P(x) = \frac{(sC_x)(N-sC_{n-x})}{NC_n}$$

[6–6]

where:

N is the size of the population.

S is the number of successes in the population.

x is the number of successes in the sample. It may be 0, 1, 2, 3,

n is the size of the sample or the number of trials.

C is the symbol for a combination.

$$P(x) = \frac{\mu^x e^{-\mu}}{x!}$$

[6-7]

where:

 μ (mu) is the mean number of occurrences (successes) in a particular interval. e is the constant 2.71828 (base of the Napierian logarithmic system).

x is the number of occurrences (successes).

P(x) is the probability for a specified value of x.

$$z = \frac{X - \mu}{\sigma}$$

Appendix B: Tables

B.1 Areas under the Normal Curve

				2.00	0.04	0.05	0.06	0.07	0.08	0.09
Z	0.00	0.01	0.02	0.03		0.0199	0.0239	0.0279	0.0319	0.0359
0.0	0.0000	0.0040	0.0080	0.0120	0.0160	0.0199	0.0636	0.0675	0.0714	0.0753
0.0	0.0398	0.0438	0.0478	0.0517	0.0557	0.0390	0.1026	0.1064	0.1103	0.1141
0.2	0.0793	0.0832	0.0871	0.0910	0.0948	0.1368	0.1406	0.1443	0.1480	0.1517
0.2	0.1179	0.1217	0.1255	0.1293	0.1331	0.1366	0.1772	0.1808	0.1844	0.1879
0.4	0.1554	0.1591	0.1628	0.1664	0.1700	0.1730	0.1772			
0.4	0.100			0.0040	0.2054	0.2088	0.2123	0.2157	0.2190	0.2224
0.5	0.1915	0.1950	0.1985	0.2019	0.2034	0.2422	0.2454	0.2486	0.2517	0.2549
0.6	0.2257	0.2291	0.2324	0.2357	0.2309	0.2734	0.2764	0.2794	0.2823	0.2852
0.7	0.2580	0.2611	0.2642	0.2673	0.2704	0.3023	0.3051	0.3078	0.3106	0.3133
0.8	0.2881	0.2910	0.2939	0.2967	0.3264	0.3289	0.3315	0.3340	0.3365	0.3389
0.9	0.3159	0.3186	0.3212	0.3238	0.3204	0.0200				0.3621
0.0			0.0404	0.3485	0.3508	0.3531	0.3554	0.3577	0.3599	0.3830
1.0	0.3413	0.3438	0.3461	0.3708	0.3729	0.3749	0.3770	0.3790	0.3810	
1.1	0.3643	0.3665	0.3686	0.3700	0.3925	0.3944	0.3962	0.3980	0.3997	0.4015
1.2	0.3849	0.3869	0.3888	0.3907	0.4099	0.4115	0.4131	0.4147	0.4162	0.4177
1.3	0.4032	0.4049	0.4066	0.4062	0.4251	0.4265	0.4279	0.4292	0.4306	0.4319
1.4	0.4192	0.4207	0.4222	0.4230	0.4201				0.4429	0.4441
	14500Made L0	0.4045	0.4357	0.4370	0.4382	0.4394	0.4406	0.4418	0.4429	0.4545
1.5	0.4332	0.4345	0.4474	0.4484	0.4495	0.4505	0.4515	0.4525	0.4535	0.4633
1.6	0.4452	0.4463	0.4474	0.4582	0.4591	0.4599	0.4608	0.4616	0.4625	0.4706
1.7	0.4554	0.4564	0.4656	0.4664	0.4671	0.4678	0.4686	0.4693		0.4767
1.8	0.4641	0.4649	0.4726	0.4732	0.4738	0.4744	0.4750	0.4756	0.4761	0.4707
1.9	0.4713	0.4719	0.4720	0.4702			2 1222	0.4808	0.4812	0.4817
	0.4770	0.4778	0.4783	0.4788	0.4793	0.4798	0.4803	0.4850	0.4854	0.4857
2.0	0.4772	0.4776	0.4830	0:4834	0.4838	0.4842	0.4846	0.4884	0.4887	0.4890
2.1	0.4821	0.4864	0.4868	0.4871	0.4875	0.4878	0.4881		0.4007	0.4916
2.2	0.4861	0.4896	0.4898	0.4901	0.4904	0.4906	0.4909	0.4911	0.4913	0.4936
2.3	0.4893	0.4890	0.4922	0.4925	0.4927	0.4929	0.4931	0.4932	0.4554	0.1000
2.4	0.4918	0.4920	0.4322	0.1022		- 1010	0.4948	0.4949	0.4951	0.4952
	0.4938	0.4940	0.4941	0.4943	0.4945	0.4946	0.4946	0.4962	0.4963	0.4964
2.5	0.4950	0.4955	0.4956	0.4957	0.4959	0.4960		0.4972	0.4973	0.4974
2.6	0.4955	0.4966	0.4967	0.4968	0.4969	0.4970	0.4971	0.4972	0.4980	0.4981
2.7	0.4965	0.4900	0.4976	0.4977	0.4977	0.4978	0.4979	0.4975	0.4986	0.4986
2.8		0.4973	0.4982	0.4983	0.4984	0.4984	0.4985	0.4900	0.4000	
2.9	0.4981		00000000000000000000000000000000000000	0.4988	0.4988	0.4989	0.4989	0.4989	0.4990	0.4990
3.0	0.4987	0.4987	0.4987	0.4900	0.550					

Appendix B

B.2 Student's t Distribution

			Confidenc	e Intervals,	С				Cor	nfidence In	tervals, c			
	80%	90%	95%	98%	99%	99.9%		80%	90%	95%	98%	99%	99.9%	
t	Level of Significance for One-Tailed Test, α							Level of Significance for One-Tailed Test, α						
df	0.100	(0,050	0.025	0.010	0.005	0.0005	df	0.100	0.050	0.025	0.010	0.005	0.0005	
ur biit	01100	Level of Significance for Two-Tailed Test, α							Level of	Significanc	e for Two-Ta	iled Test, α		
-	0.200	0.10	0.05	0.02	0.01	0.001		0.200	0.10	0.05	0.02	0.01	0.001	
-	3.078	6.314	12.706	31.821	63.657	636.619	36	1.306	1.688	2.028	2.434	2.719	3.582	
1 2	1.886	2.920	4.303	6.965	9.925	31.599	37	1.305	1.687	2.026	2.431	2.715	3.574	
3	1.638	2.353	3.182	4.541	5.841	12.924	38	1.304	1.686	2.024	2.429	2.712	3.566	
4	1.533	2.132	2.776	3.747	4.604	8.610	39	1.304	1.685	2.023	2.426	2.708	3.558	
5	1.476	2.015	2.571	3.365	4.032	6.869	40	1.303	1.684	2.021	2.423	2.704	3.551	
			0.447	3.143	3.707	5.959	41	1.303	1.683	2.020	2.421	2.701	3.544	
6	1.440	1.943	2.447		3.499	5.408	42	1.302	1.682	2.018	2.418	2.698	3.538	
7	1.415	1.895	2.365	2.998	3.355	5.041	43	1.302	1.681	2.017	2.416	2.695	3.532	
8	1.397	1.860	2.306	2.896		4.781	44	1.301	1.680	2.015	2.414	2.692	3.526	
9	1.383 1.372	1.833 1.812	2.262	2.821 2.764	3.250 3.169	4.781	45	1.301	1.679	2.014	2.412	2.690	3.520	
10	1.372				SASSONIA S			1 000	1 070	2.013	2.410	2.687	3.515	
11	1.363	1.796	2.201	2.718	3.106	4.437.	46	1.300	1.679	2.013	2.408	2.685	3.510	
12	1.356	1.782	2.179	2.681	3.055	4.318	47	1.300	1.678		2.407	2.682	3.505	
13	1.350	1.771	2.160	2.650	3.012	4.221	48	1.299	1.677	2.011		2.680	3.500	
14	1.345	1.761	2.145	2.624	2.977	4.140	49	1.299	1.677	2.010	2.405			
15	1.341	1.753	2.131	2.602	2.947	4.073	50	1.299	1.676	2.009	2.403	2.678	3.496	
16	1.337	1.746	2.120	2.583	2.921	4.015	51	1.298	1.675	2.008	2.402	2.676	3.492	
17	1.333	1.740	2.110	2.567	2.898	3.965	52	1.298	1.675	2.007	2.400	2.674	3.488	
18	1.330	1.734	2.101	2.552	2.878	3.922	53	1.298	1.674	2.006	2.399	2.672	3.484	
19	1.328	1.729	2.093	2.539	2.861	3.883	54	1.297	1.674	2.005	2.397	2.670	3.480	
20	1.325	1.725	2.086	2.528	2.845	3.850	55	1.297	1.673	2.004	2.396	2.668	3.476	
		1	1	2.518	2.831	3.819	56	1.297	1.673	2.003	2.395	2.667	3.473	
21	1.323	1.721	2.080	2.518	2.819	3.792	57	1.297	1.672	2.002	2.394	2.665	3.470	
22	1.321	1.717	2.074		2.807	3.768	58	1.296	1.672	2.002	2.392	2.663	3.466	
23	1.319	1.714	2.069	2.500		3.745	59	1.296	. 1.671	2.001	2.391	2.662	3.463	
24	1.318	1.711	2.064 2.060	2.492 2.485	2.797 2.787	3.725	60	1.296	1.671	2.000	2.390	2.660	3.460	
25	1.310	1.700			2000000000000			4 000	1.070	2.000	2.389	2.659	3.45	
26	1.315	1.706	2.056	2.479	2.779	3.707	61	1.296	1.670	1.999	2.388	2.657	3.45	
27	1.314	1.703	2.052	2.473	2.771	3.690	62	1.295	1.670		2.387	2.656	3.45	
28	1.313	1.701	2.048	2.467	2.763	3.674	63	1.295	1.669	1.998	2.386	2.655	3.44	
29	1.311	1.699	2.045	2.462	2.756	3.659	64	1.295	1.669	1.998			3.44	
30	1.310	1.697	2.042	2.457	2.750	3.646	65	1.295	1.669	1.997	2.385	2.654		
31	1.309	1.696	2.040	2.453	2.744	3.633	66	1.295	1.668	1.997	2.384	2.652	3.44	
32	1.309	1.694	2.037	2.449	2.738	3.622	67	1.294	1.668	1.996	2.383	2.651	3.44	
33	1.308	1.692	2.035	2.445	2.733	3.611	68	1.294	1.668	1.995	2.382	2.650	3.43	
34	1.306	1.691	2.032	2.441	2.728	3.601	69	1.294	1.667	1.995	2.382	2.649	3.43	
35	1.307	1.690	2.032	2.438	2.724	3.591	70	1.294	1.667	1.994	2.381	2.648	3.43	

(continued)

Appendix B

B.2 Student's t Distribution (concluded)

		Col	nfidence Int	ervals. c					Cor	nfidence Int	ervals, c			
	80%	90%	95%	98%	99%	99.9%		80%	90%	95%	98%	99%	99.9%	
-	Level of Significance for One-Tailed Test, α							Level of Significance for One-Tailed Test, α						
df	0.400	0.050	0.025	0.010	0.005	0.0005	0.0005 df		0.050	0.025	0.010	0.005	0.0005	
	0.100 0.050 0.025 0.010 0.005 0.0005 Level of Significance for Two-Tailed Test, α							0.100 0.050 0.025 0.010 0.005 0.0005 Level of Significance for Two-Tailed Test, α						
	200 0 001							0.200 0.10 0.05 0.02 0.01						
	0.200	0.10	0.05	0.02							2.369	2.632	3.403	
71	1.294	1.667	1.994	2.380	2.647	3.433	89	1.291	1.662	1.987	177 177 TOTAL	2.632	3.402	
72	1.293	1.666	1.993	2.379	2.646	3.431	90	1.291	1.662	1.987	2.368	2.032	3.402	
73	1.293	1.666	1.993	2.379	2.645	3.429	91	1,291	1.662	1.986	2.368	2.631	3.401	
74	1.293	1.666	1.993	2.378	2.644	3.427	92	1.291	1.662	1.986	2.368	2.630	3.399	
75	1.293	1.665	1.992	2.377	2.643	3.425	93	1.291	1.661	1.986	2.367	2.630	3.398	
		-0.000			0.040	3.423	94	1.291	1.661	1.986	2.367	2.629	3.397	
76	1.293	1.665	1.992	2.376	2.642	3.423	95	1.291	1.661	1.985	2.366	2.629	3.396	
77	1.293	1.665	1.991	2.376	2.641		33	1.201	1.001	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			57/17/57/32	
78	1.292	1.665	1.991	2.375	2.640	3.420 3.418 3.416	96	1.290	1.661	1.985	2.366	2.628	3.395	
79	1.292	1.664	1.990	2.374	2.640		97	1.290	1.661	1.985	2.365	2.627	3.394	
80	1.292	1.664	1.990	2.374	2.639	3.410	98	1.290	1.661	1.984	2.365	2.627	3.393	
	1 000	1.664	1.990	2.373	2.638	3.415	99	1,290	1.660	1.984	2.365	2.626	3.392	
81	1.292		1.989	2.373	2.637	3,413	100	1,290	1.660	1.984	2.364	2.626	3.390	
82	1.292	1.664 1.663	1.989	2.372	2.636	3.412								
83	1.292		1.989	2.372	2.636	3.410	120	1.289	1.658	1.980	2.358	2.617	3.373	
84	1.292	1.663	1.988	2.371	2.635	3.409	140	1.288	1.656	1.977	2.353	2.611	3.361	
85	1.292	1.663	1.900	2.371	2.000	000	160	1.287	1.654	1.975	2.350	2.607	3.352	
86	1,291	1.663	1.988	2.370	2.634	3.407	180	1.286	1.653	1.973	2.347	2.603	3.345	
87	1.291	1.663	1.988	2.370	2.634	3.406	200	1.286	1.653	1.972	2.345	2.601	3.340	
88	1.291	1.662	1.987	2.369	2.633	3.405	00	1.282	1.645	1.960	2.326	2.576	3.291	