FACULTY OF SCIENCE

DEPARTMENT OF APPLIED PHYSICS AND ENGINEERING
MATHEMATICS
NATIONAL DIPLOMA IN APPLIED BUILDING
MODULEPHY1YKT CAMPUSAPPLIED BUILDING SCIENCE DFC DECEMBER EXAMINATION

DATE 02/12/2015
ASSESSOR
INTERNAL MODERATOR
DURATION 3 HOURS

SESSION: 11:30-14:30

DR P L MASITENG
DR S M RAMAILA

NUMBER OF PAGES: 12 PAGES, INCLUDING 3 INFORMATION SHEETS INSTRUCTIONS: CALCULATORS ARE PERMITTED (ONLY ONE PER STUDENT)

REQUIREMENTS: 1 MULTIPLE CHOISE ANSWER SHEET

SECTION A - MULTIPLE CHOICE

ANSWER THIS SECTION ON THE OPTICAL ANSWER SHEET.

1. A solid cylindrical steel column is 4 m long and 9 cm in diameter. Young's modulus for steel is $1.9 \times 10^{11} \mathrm{~Pa}$. The decrease in the length of the column when carrying a load of 80000 kg will be:

A 26.5 mm
B 2.6 mm
C $\quad 64.9 \mathrm{~mm}$
D 0.058 mm

Questions 2 and 3 refer to the following information.

A metal wire 75 cm long and 0.13 cm in diameter stretches 0.035 cm when a load of 8 kg is hung on its end.
2. The stress in the wire is:

A $6.03 \times 10^{6} \mathrm{~Pa}$
B $3.84 \times 10^{4} \mathrm{~Pa}$
C $1.48 \times 10^{7} \mathrm{~Pa}$
D $5.91 \times 10^{7} \mathrm{~Pa}$
3. The strain in the wire is:

A 4.67×10^{-4}
B 1.73×10^{-3}
C 9.38
D 2.14×10^{3}
4. A circular steel wire 2 m long is to stretch no more than 0.25 cm when a tensile force of 400 N is applied to it. The minimum diameter required is:

A $1.6 \times 10^{-3} \mathrm{~mm}$
B $\quad 0.71 \mathrm{~mm}$
C $\quad 0.14 \mathrm{~mm}$
D 1.4 mm
5. A nylon rope used by mountaineers stretches by 1.1 m under the weight of a 65 kg climber. The rope is 45 m long and 7 mm in diameter. The cross-sectional area of the rope is:

A $3.85 \times 10^{-5} \mathrm{~m}^{2}$
B $1.54 \times 10^{-4} \mathrm{~m}^{2}$
C $154 \mathrm{~m}^{2}$
D $38.5 \mathrm{~m}^{2}$
6. Young' modulus for the rope material in question 5 is:

A 677 MPa
B 69 MPa
C $\quad 169 \mathrm{MPa}$
D $\quad 17.3 \mathrm{MPa}$
7. A metal rod that is 4 m long and $0.5 \mathrm{~cm}^{2}$ in cross-section area is found to stretch 0.2 cm under a tension of 5000 N . Young's modulus for this metal is:

A 200 MPa
B 20 MPa
C 1960 GPa
D 200 GPa
8. Luminous intensity is defined as:

A the amount of light falling onto a surface
B the flow of light through air
C $\frac{\text { total flux }}{\text { total area }}$
D the amount of light given off by a source
9. A 100 W light bulb of luminous intensity 60 cd is suspended 3 m above the floor. The luminous flux of the lamp is:

A 60 lumens
B 745 lumens
C 4.8 lumens
D 6.67 lumens
10. The illumination directly below the lamp in question 9 is:

A 754 lux
B 60 lux
C 6.67 lux
D 20 lux
11. The height of the lamp in question 9 in order to half the illumination is:

A 4.24 m
B 1.5 m
C 6 m
D 1.8 m
12. A 64 cd lamp and a 36 cd lamp are placed 70 cm apart. Where, on a straight line between them, will a photometer balance?

A 35 cm from 64 cd lamp
B 25 cm from 36 cd lamp
C 50 cm from 36 cd lamp
D 40 cm from 64 cd lamp
13. A transverse wave is a wave of which

A the displacement of the particles of the medium is perpendicular to the direction in which the wave travels
B the displacement is parallel to the direction in which the wave travels
C the displacement is in the same direction as the direction in which the wave travels
D the displacement is opposite to the direction in which the wave travels
14. The definition of the frequency of a wave is:

A the maximum displacement of the particles of the particles of the medium from the rest position
B the distance between a wave crest and wave trough
C the distance between two successive wave crests
D the number of wave crests passing a fixed point in 1 second
15. A cannon produces a 90 dB sound level at a certain distance from a sound meter. The reading on the meter when two such cannons are fired at the same time is:

A 180 dB
B 93 dB
C 90 dB
D 45 dB
16. A sound level meter placed in front of the loudspeaker of a 60 W sound system reads 70 dB . All else being equal, when placed in front of a 120 W system, the meter will read

A 120 dB
B 140 dB
C 63 dB
D 73 dB
17. The exterior wall of a lecture room faces a main road and has a sound reduction index of 35 dB at 1000 Hz . How much louder is the traffic noise outside the room than it is inside the room?

A 35 times as loud
B 11.3 times as loud
C 10 times as loud
D 20 times as loud
18. A stone grinding machine produces a sound intensity level of 85 dB . The intensity level of 3 such machines operated at the same time is:

A 80 dB
B $\quad 23.8 \mathrm{~dB}$
C 89.8 dB
D 84.8 dB
19. Density is by definition a body's

A mass to weight ratio
B weight to volume ratio
C mass to volume ratio
D volume to mass ratio
20. The weight of the air in a room with a $4 \mathrm{~m} \times 5 \mathrm{~m}$ floor and a ceiling 3 m high is (the density of air $=1.2 \mathrm{~kg} \mathrm{~m}^{-3}$)

A 72 kg
B 24 kg
C $\quad 705.6 \mathrm{~N}$
D $\quad 235.2 \mathrm{~N}$
21. The side length of a 37 kg cube of platinum is (the relative density of platinum $=21.4$)

A 0.12 m
B 1.2 m
C $\quad 0.04 \mathrm{~m}$
D 1.3 m
22. $50 \mathrm{~cm}^{3}$ of water has a mass of

A 0.5 kg
B 50 kg
C 5 kg
D 0.05 kg
23. The RD of aluminium is 2.7. The density of aluminium expressed in SI-units is:

A $2700 \mathrm{~kg} \mathrm{~m}^{-3}$
B $2.7 \mathrm{~g} \mathrm{~cm}^{-3}$
C $2.7 \mathrm{~kg} \mathrm{~m}^{-3}$
D $0.0027 \mathrm{~kg} \mathrm{~m}^{-3}$
24. Archimedes' principle states that the upthrust experienced by a body totally immersed in a liquid is equal to

A the mass of the body
B the weight of the body
C the weight of the displaced liquid
D the mass of the displaced liquid
25. A solid cube with side length 1.5 cm and density $10.5 \times 10^{3} \mathrm{~kg} \mathrm{~m}^{-3}$ floats on an unknown liquid. If the cube is submerged to a depth of 1.16 cm , the density of the liquid is:
(in $\mathrm{kg} \mathrm{m}^{-3}$)
A 13.6×10^{3}
B 1×10^{3}
C 10.5×10^{3}
D 900
26. A body of weight 20 N floats on a liquid. The weight of the displaced liquid is:

A 0 N
B less than 20 N
C 20 N
D more than 20 N
27. A body has a weight of 250 N in air and 152 N in water. The volume of the body is:

A $0.01 \mathrm{~cm}^{3}$
B $0.01 \mathrm{~m}^{3}$
C $250 \mathrm{~m}^{3}$
D $152 \mathrm{~cm}^{3}$
28. The area of the face of the small piston of a hydraulic press is $10 \mathrm{~cm}^{2}$. An input force of 100 N is applied to this piston and the resulting force on the large piston is 9600 N . The area, in cm^{2}, of the face of the large piston is:

A 9600
B 10
C 96
D 960
29. A surveyor uses a steel measuring tape that is exactly 50 m long at a temperature of $20^{\circ} \mathrm{C}$. The length of the tape on a hot summer day when the temperature is $35^{\circ} \mathrm{C}$ is:

A 50.0303 m
B 49.9917 m
C 50.0083 m
D 49.9697 m
30. An aluminium cube has a side length of 4 cm at $10^{\circ} \mathrm{C}$ and is heated to $100^{\circ} \mathrm{C}$. The change in volume of the cube is:

A $0.024 \mathrm{~cm}^{3}$
B $1,127 \mathrm{~cm}^{3}$
C $0,095 \mathrm{~cm}^{3}$
D $0,38 \mathrm{~cm}^{3}$
31. The final temperature when 80 g water at $60^{\circ} \mathrm{C}$ is mixed with 60 g water at $20^{\circ} \mathrm{C}$ is:

A $40^{\circ} \mathrm{C}$
B $50^{\circ} \mathrm{C}$
C $42.9^{\circ} \mathrm{C}$
D $30.5^{\circ} \mathrm{C}$
32. A block of ice, mass $0,51 \mathrm{~kg}$, at $0^{\circ} \mathrm{C}$ melts and in the process absorbs heat to the amount of:

A 1675 J
B 1675 kJ
C 170.9 J
D 170.9 kJ
33. Specific latent heat of fusion is the heat

A gained by a solid when changing into a liquid
B gained by 1 kg of a solid when changing into a liquid
C released by a gas when changing into a liquid
D gained by a liquid when changing into a gas
34. A Styrofoam box used to keep drinks cold on the beach has a total wall area (including the lid) of $0.8 \mathrm{~m}^{2}$ and a wall thickness of 2 cm . The rate of heat flow into the box if the temperature inside the box is $0^{\circ} \mathrm{C}$ and the outside temperature is $30^{\circ} \mathrm{C}$ is (the k value of Styrofoam $=0.01 \mathrm{~W} \mathrm{~m}^{-1} \mathrm{C}^{-1}$)

A 0.12 W
B 120 W
C 1.2 W
D 12 W
$7 \backslash \ldots$
35. A square aluminium bar is placed in tension by a force of 500 kN . The dimensions of the bar if the stress is not to exceed 20 MPa is:

A 0.158 m
B 19.66 m
C 1.234 m
D 20.45 m
36. A wire with cross-sectional area $4 \mathrm{~mm}^{2}$ is stretched by 0.1 mm when a certain weight is hung from it. The amount by which a wire of the same material and the same length will stretch if its cross-sectional area is $8 \mathrm{~mm}^{2}$ and the same weight is hung from it is:

A 0.05 mm
B 0.1 mm
C 0.2 mm
D 0.01 mm
37. The illumination provided by a light source at a distance of 5 m from it is 12000 lux. The luminous intensity of the source is:

A 480 cd
B $6 \times 10^{4} \mathrm{~cd}$
C $2.4 \times 10^{3} \mathrm{~cd}$
D $3 \times 10^{5} \mathrm{~cd}$
38. A noise-level meter reads the sound level in a room to be 85 dB . The sound intensity in the room is therefore

A $85 \mathrm{Wm}^{-2}$
B $3.16 \times 10^{8} \mathrm{~W} \mathrm{~m}^{-2}$
C $3.16 \times 10^{-4} \mathrm{Wm}^{-2}$
D $8.5 \times 10^{-12} \mathrm{~W} \mathrm{~m}^{-2}$
39. A 1.5 kW electric kettle takes 2 minutes 15 seconds to heat an amount of water from $20^{\circ} \mathrm{C}$ to $94^{\circ} \mathrm{C}$. The kettle is 80% efficient at heating water. The energy supplied is:

A 202.5 J
B 162 J
C $1.62 \times 10^{5} \mathrm{~J}$
D $\quad 2.025 \times 10^{5} \mathrm{~J}$
40. The energy used in question 39 is:

A $2.53 \times 10^{5} \mathrm{~J}$
B $1.5 \times 10^{3} \mathrm{~J}$
C $2.025 \times 10^{5} \mathrm{~J}$
D $1.62 \times 10^{5} \mathrm{~J}$
41. The mass of water heated in question 39 is:

A 0.81 kg
B 0.65 kg
C $\quad 0.52 \mathrm{~kg}$
D $4.8 \times 10^{-3} \mathrm{~kg}$
42. The coefficient of linear expansion is defined as:

A expansion for every degree temperature change
B change in length for every degree temperature change
C change per unit length for a change in temperature
D change per unit length for every degree temperature change

TOTAL SECTION A: 84

SECTION B

ANSWER THIS SECTION IN FULL IN THE ANSWER SCRIPT.

QUESTION 1

A carpenter builds an outside house wall with a layer of wood 3 cm thick on the outside and a layer of Styrofoam insulation 2.2 cm thick as the inside wall surface.

Given:
$\mathrm{K}_{\text {wood }} \quad=0.08 \mathrm{~W} \mathrm{~m}^{-1}{ }^{\circ} \mathrm{C}^{-1}$
$\mathrm{K}_{\text {styrofoam }}=0.01 \mathrm{~W} \mathrm{~m}^{-1} \mathrm{O}^{-1}$
The interior surface temperature is $19{ }^{\circ} \mathrm{C}$ and the outside surface temperature is $-10^{\circ} \mathrm{C}$

Calculate:

1.1 The rate of heat flow through the wall if the area of the wall is $12 \mathrm{~m}^{2}$.
1.2 The temperature between the wood and the Styrofoam.

QUESTION 2

Water enters a house through a pipe with an inside diameter of 2 cm at a pressure of $4 \times 10^{5} \mathrm{~Pa}$. A 1 cm diameter pipe leads to the first-floor bathroom 5 m above. The flow speed in the 2 cm diameter pipe is $1.5 \mathrm{~m} \mathrm{~s}^{-1}$.

Calculate:

2.1 The flow speed in the 1 cm diameter pipe.
2.2 The pressure in the 1 cm diameter pipe on the first floor.
2.3 The flow rate in the pipes.

QUESTION 3

The diagram shows a loaded framework. Determine the reaction forces R_{L} and R_{R} and the magnitude and nature of the forces in the members. Use Bow's notation and tabulate your results.

