

PROGRAM

: NATIONAL DIPLOMA

ENGINEERING: MECHANICAL ENGINEERING: INDUSTRIAL

SUBJECT

: MECHANICS I

CODE

: CHM 111T

DATE

: SUMMER EXAMINATION 2015

24 NOVEMBER 2015

DURATION

: (SESSION 1) 08:30 - 11:30

WEIGHT

: 40:60

TOTAL MARKS

: 106

100 MARKS = 100%

EXAMINER

: MR S GQIBANI

MODERATOR : MRS A MAMBA

NUMBER OF PAGES : 6 PAGES

INSTRUCTIONS

: ANSWER ALL THE QUESTIONS.

: ALL DIMENSIONS ON DIAGRAMS ARE IN mm

UNLESS OTHERWISE SPECIFIED.

: ONLY NEAT SKETCHES OF A SUITABLE SIZE WILL

BE GIVEN CREDIT.

: ONE CALCULATOR PER CANDIDATE.

2/...

Figure 1

A system of four forces acting on a body is shown in Figure 1. Note that the direction of forces 120 N and 200 N is given in terms of the gradient.

- 1.1 Calculate the direction of the forces 120N and 200N in degrees;
- 1.2 Determine the resultant force of the four forces and its direction.
- 1.3 What is the value of the equilibrant force and its direction?
- 1.4 Show the resultant and equilibrant forces on your diagram that is showing the forces.

[<u>17</u>]

Figure 2

Figure 2 shows a coplanar system of forces acting on a flat plate. Ignore the weight of the flat plate and calculate:

- 2.1 The resultant force and its direction;
- 2.2 The position of the resultant force measured from corner C.
- 2.3 show the resultant force on your sketch.

[<u>16]</u>

A disc of ϕ 260 mm has a hole of ϕ 100 mm cut in it as shown in Figure 3, find the position of the centroid for the composite figure, and show the position on the diagram.

[<u>10</u>]

QUESTION 4

A block that has a mass of 100 kg rests on an inclined plane which forms an angle of 15° to the horizontal. Calculate the force, which is acting at an angle of 20° to the inclined plane which will pull the block up the incline which will:

4.1 pull the body up the incline; (7)

4.2 push the body up the incline. (5)

[12]

Mr Baloyi is driving his Ford Ranger along Beit Street. He starts the bakkie from rest with a uniform acceleration until a velocity of 48 km/h is reached. The Ford Ranger then moves with a constant speed until Mr Baloyi decelerates and finally stops the bakkie 600 m from the starting point. The whole journey takes 1 minute and the magnitude of his deceleration is twice that of the acceleration.

- 5.1 Draw the velocity time graph for the complete journey and show all the important information. (3)
- 5.2 find the magnitude of acceleration; (14)
- 5.3 also calculate the distance the bakkie travelled with constant velocity. (2)

1191

QUESTION 6

A body is released from rest from a building 110 m high and at the same time a second ball is projected upwards from the ground at 60 m/s:

- 6.1 calculate the time taken for the two bodies to reach other; (5)
- 6.2 how high above the ground will the bodies pass each other. (2)

[7]

QUESTION 7

A flat belt is used to connect a large pulley which is 800 mm in diameter, this pulley is driving a 200 mm diameter pulley. The bigger pulley is accelerated from 60 r/min to 240 r/min during which it turns through 360 revolutions. Assuming that there is no belt slip, calculate:

- 7.1 the angular acceleration of each pulley in rad/s^2 ; (5)
- 7.2 the linear acceleration of the flat belt; (2)
- 7.3 the initial and final velocity of the smaller pulley in r/min and rad/s respectively. (4)

[11]

Figure 4

- 8.1 List the SEVEN different forms of energy that are associated with bodies in motion. (7)
- 8.2 A 20 kg mass is attached to a 30 kg mass by a light cord passing over a light, frictionless pulley as show in figure 4. The coefficient of friction on the 15° incline is 0,15. Calculate:
 - 8.2.1 the direction of motion of the system when the masses are released; (3)
 - 8.2.2 the acceleration of the masses. (4)

[<u>14</u>]