MAT3AW3 PAPER 1
 October 2015 Time: 90 minutes Total =33 Mark:

30

Type your Surname, Initials and Student number in the orange box below:

Read the instructions handed out carefully. Use only built-in syntax and the Help Files to answer the following:

```
1.A small airplane can reach an altitude h
        (measured in meters) in time t (in minutes)
        according to the formula
        h= hmax 
    hmax }=5486m\mathrm{ and describes the absolute ceil-
    ing of the plane.
```

 1.1. Calculate the altitude reached by the
 airplane after 4.5 minutes. (4)
 1026.81
1.2. Plot a graph of time against altitude over an interval $0 \leq t \leq 80$. Add gridlines to your graph.(3)
1.3. Use your graph to read off the approximate height of the airplane after an hour. (1)
2. Use the inverse matrix method to solve the following:

$$
\begin{gathered}
2 p-3 q-r+2 s+3 t=4 \\
4 p-4 q-r+4 s+11 t=4 \\
-5 q-2 r+2 s-t=9 \\
2 q+r+4 t=-5 \\
-p+2 r+s+3 t=1
\end{gathered}
$$

Give your answer in decimals and in matrix form.
(6)

Complete the following:
Hence $p=; q=; r=; s=$ and $t=$
3. The driven pendulum can be modelled with the second order differential equation $\frac{d^{2} x}{d t^{2}}+2 \frac{d x}{d t}+2 x=12$ cost
with initial conditions $x(0)=0.75$;
$x^{\prime}(0)=0.25$

```
X'''i}=f(\mp@subsup{t}{i}{\prime},\mp@subsup{X}{i}{\prime},\mp@subsup{X}{i}{\prime}
xi+1}=\mp@subsup{X}{i}{}+h\mp@subsup{X}{i}{\prime}+\frac{\mp@subsup{h}{}{2}}{2}\mp@subsup{X}{}{\prime}\mp@subsup{'}{}{\prime
X'i+1 = X'i
```

3.1. Write an Euler module for a second order differential equation. (6)
3.2. Produce Euler values over the domaine $0 \leq t \leq 15$ with step size $h=0.1$. DO NOT DISPLAY THE VALUES!
3.3. Plot the time-displacement graph. Label your axes and title your graph "Driven pendulum".
3.4. Plot the displacement-velocity phase portrait, title your graph "Phase Portrait".

