FACULTY OF SCIENCE

DEPARTMENT OF APPLIED PHYSICS AND ENGINEERING MATHEMATICS

MODULE: WWEA22C MATHEMATICS II
(NATIONAL DIPLOMA, ENGINEERING: CIVIL
CAMPUS: DFC
SUPPLEMENTARY EXAM: NOVEMBER 2015

DATE: NOVEMBER 2015

EXAMINER
MODERATOR
DURATION 90 minutes

Mr JJ Bruyns Mr C Lock

MARKS 60

NUMBER OF PAGES: 4 PAGES
INSTRUCTIONS:

- ONE NON PROGRAMMABLE CALCULATOR IS PERMITTED.
- REQUIREMENTS: MATHEMATICAL INFORMATION BOOKLET

Section A

1. $\int_{1}^{2} \frac{\ln x}{x} d x$
2. $\int \frac{0,5^{\sin ^{-1} x}}{\sqrt{1-x^{2}}} d x$
3. Find the area under the curve $y=\sqrt{x}$ between $x=0$ and $x=4$

Section B

4. Determine the integrals below, show all steps:
4.1 $\int \cos ^{3} 2 x d x$
$4.2 \int \frac{x^{2}-3 x+4}{x^{3}-2 x^{2}+x} d x$
$4.3 \int \frac{2}{\sqrt{3+2 x-x^{2}}} d x$
$4.4 \quad \int 2 x^{2} \ln x d x$
$4.5 \int \sec ^{2} x d x$
$4.6 \int \frac{x^{2}-2 x}{(2 x+1)\left(x^{2}+1\right)} d x$
$4.7 \quad \int_{0}^{\infty} e^{2 x} \sin x d x$
$4.8 \int \frac{2 x+3}{9 x^{2}-12 x+8} d x$
[39]
5.1 An airplane's fuel tank is an oblate ellipsoid generated by revolving the region bounded by first and fourth quadrant of the ellipse $\frac{x^{2}}{4}+y^{2}=1$ about the y-axis. Calculate the volume of the fuel tank.

5.2.1 Determine the area bounded between the two graphs the parabola $y=x^{2}$ and the line $y=x$
5.2.2 Determine the volume of the solid of revolution generated when the area bounded by the parabola $y=x^{2}$ and the line $y=x$ is revolved about the line $\mathrm{x}=1$

5.3 The shape of a mine dump is defined by $S=4 \sin ^{2} x$. If the mine dump has a uniform width of 15 meters and a width of π meters, and the sand must be transported by trucks with a capacity of $20 \mathrm{~m}^{3}$, determine the volume of the sand and calculate the number of truckloads required to move the sand to a new location. NB This is not a rotation.

[18]

Total: 63

