

FACULTY OF SCIENCE

DEPARTMENT OF APPLIED PHYSICS AND ENGINEERING MATHEMATICS

MODULE: WWEA22C MATHEMATICS II (NATIONAL DIPLOMA, ENGINEERING: CIVIL

CAMPUS: DFC SUPPLEMENTARY EXAM:

NOVEMBER 2015

DATE: NOVEMBER 2015 EXAMINER MODERATOR

Mr JJ Bruyns Mr C Lock

DURATION 90 minutes

MARKS 60

NUMBER OF PAGES: 4 PAGES

INSTRUCTIONS:

- ONE NON PROGRAMMABLE CALCULATOR IS PERMITTED.
- REQUIREMENTS: MATHEMATICAL INFORMATION BOOKLET

Section A

1.
$$\int_{-1}^{2} \frac{\ln x}{x} dx$$
 (2)
2. $\int \frac{0.5^{\sin^{-1} x}}{\sqrt{1-x^{2}}} dx$ (2)

3. Find the area under the curve $y = \sqrt{x}$ between x = 0 and x = 4 (2) [6]

Section B

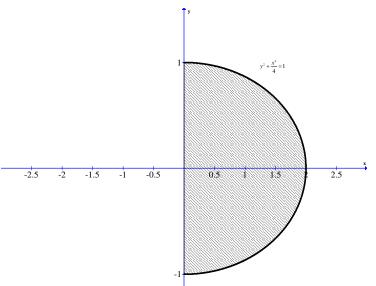
4. Determine the integrals below, show all steps:

$$4.1 \quad \int \cos^3 2x \, dx \tag{3}$$

4.2
$$\int \frac{x^2 - 3x + 4}{x^3 - 2x^2 + x} dx$$
(6)

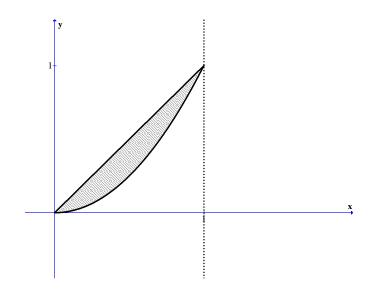
4.3
$$\int \frac{2}{\sqrt{3+2x-x^2}} dx$$
 (5)

$$4.4 \quad \int 2x^2 \ln x dx \tag{5}$$

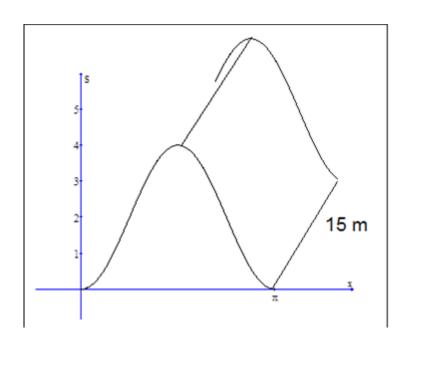

$$4.5 \int \sec^2 x \, dx \tag{3}$$

4.6
$$\int \frac{x^2 - 2x}{(2x+1)(x^2+1)} dx$$
 (5)

$$4.7 \qquad \int_0^\infty e^{2x} \sin x dx \tag{5}$$


4.8
$$\int \frac{2x+3}{9x^2-12x+8} dx$$
 (5)

5.1 An airplane's fuel tank is an oblate ellipsoid generated by revolving the region bounded by first and fourth quadrant of the ellipse $\frac{x^2}{4} + y^2 = 1$ about the *y-axis*. Calculate the volume of the fuel tank. (5)



5.2.1 Determine the **area** bounded between the two graphs the parabola $y = x^2$ and the line y = x (3)

5.2.2 Determine the **volume** of the solid of revolution generated when the area bounded by the parabola $y = x^2$ and the line y = x is revolved about the line x=1 (5)

5.3 The shape of a mine dump is defined by $S = 4\sin^2 x$. If the mine dump has a uniform width of 15 meters and a width of π meters, and the sand must be transported by trucks with a capacity of 20m³, determine the volume of the sand and calculate the number of truckloads required to move the sand to a new location. <u>NB This is not a rotation</u>. (5)

