UNIVERSITY OF JOHANNESBURG

FACULTY OF SCIENCE

	Examiner	Moderator
Paper 1		
30 Marks		
Paper 2		
70 Marks		
EM/100		

	Examiner	Moderator
SM		
EM		
FM		

DEPARTMENT OF APPLIED PHYSICS AND ENGINEERING MATHEMATICS

NATIONAL DIPLOMA IN ENGINEERING:
 ELECTRICAL ENGINEERING

```
CAMPUS: DFC
MODULE: MAT3AW3 ENGINEERING MATHEMATICS 3
NOVEMBER EXAMINATION 2015
(PAPER 2)
```

```
DATE 06/11/2015
```

DATE 06/11/2015
ASSESSOR
ASSESSOR
SESSION 08:30-11:30
SESSION 08:30-11:30
DR PG DLAMINI
DR PG DLAMINI
MODERATOR
MODERATOR
DR Q VAN DER HOFF
DR Q VAN DER HOFF
DURATION 3 HOURS
DURATION 3 HOURS
MARKS
MARKS
1 0 0

```
1 0 0
```

SURNAME AND INITIALS: \qquad

STUDENT NUMBER: \qquad

LECTURER: \qquad

CONTACT NUMBER: \qquad

NUMBER OF PAGES: 14

REQUIREMENTS : INFORMATION BOOKLET(AS ISSUED TO YOU IN THE TEST) NON-PROGRAMMABLE SCIENTIFIC CALCULATOR

INSTRUCTIONS : Please fill in your particulars on the front page. Answer all the questions in the space provided. Do not write in PENCIL. Pencil will not be marked.
You may use the back of each page (i.e. the left-hand side) for rough work OR to complete a question, if needed.
Rough work will not be marked.
PLEASE CHECK THAT YOU HAVE RECEIVED 14 PAGES

1. Determine the following
(a) $L\{\cos 3 t \cos 2 t\}$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(b) $L\left\{t e^{t-1} H(t-1)\right\}$
(c) $L^{-1}\left\{\frac{e^{2-4 p}}{2 p-1}\right\}$
(d) $\frac{1}{D^{2}+2 D+1}\left\{12 e^{-x}\right\}$
2. (a) Sketch the graph of the function $f(t)=[H(t-2)-H(t-5)] e^{-\frac{t}{4}}$ for $t \geq 0$.
(b) The function represented by the graph below is defined analytically as

$$
f(t)=\left\{\begin{array}{lc}
1-t & 0 \leq t<2 \\
2-t & 2 \leq t<4 \\
-2 & t \geq 4
\end{array}\right.
$$

(i) Express $f(t)$ in terms of Heaviside functions.
\qquad
\qquad
\qquad
\qquad
(ii) Find $L\{f(t)\}$
\qquad
\qquad
\qquad
\qquad
3. Determine the unique solutions of the following differential equations by using the Laplace transform, subject to the indicated initial conditions:
(a) $y^{\prime \prime}+2 y^{\prime}+y=4 \sin t, \quad y(0)=-2, y^{\prime}(0)=1$
(b) $y^{\prime \prime}+2 y^{\prime}+3 y=e^{-t}+\delta(t-3 \pi), \quad y(0)=y^{\prime}(0)=0$
4. Consider the motion of an object m attached to the end of a spring that is subject to a damping force. Assume that the damping force is proportional to the velocity of the mass and act in the direction opposite to the motion. Then the governing equation obtained by applying Newton's second law is given by

$$
m \frac{d^{2} x}{d t^{2}}+c \frac{d x}{d t}+k x=f(t)
$$

where c and k are called the damping and spring constant respectively. Let $m=1, c=2.5$ and $k=1$ and an external force $f(t)=e^{3 t}$.
(a) Use the Laplace transform to solve the equation.
\qquad
(b) Use \mathbf{D}-operators to solve the equation.
(c) Discuss the solution as t approaches ∞
5. Find the general solutions of the following differential equations, using D-operators.
(a) $y^{\prime \prime}-2 y^{\prime}=6 e^{2 x}-4 \sin x$,
(b) $\left(D^{2}+D+12\right) y=t^{2} e^{t}$,
6. Use \mathbf{D}-operators to solve the following system of differential equations for \boldsymbol{y} only.

$$
\begin{aligned}
& \left(D^{2}+1\right) x+(D-1) y=1 \\
& (D+1) x+\left(D^{2}-1\right) y=2
\end{aligned}
$$

\qquad
\qquad \longrightarrow
7. Find a Fourier series for the following even function

$$
f(t)=\left\{\begin{array}{lc}
t+\frac{\pi}{2} & -\pi \leq t \leq 0 \tag{10}\\
-t+\frac{\pi}{2} & 0<t \leq \pi
\end{array} \quad ; \quad f(t)=f(t+2 \pi)\right.
$$

\qquad
\qquad (
\qquad
\qquad
\qquad (
8. Perform a numerical harmonic analysis on the following data, round off all calculations to two decimal places and present a Fourier approximation of $f(t)$ up to the first harmonics. [7]

t	0	0.25	0.5	1.0	1.5	2.0
$f(t)$	0	1.6	3.1	4.2	4.5	4.02

