UNIVERSITY
JOHANNESBURG

FACULTY OF SCIENCE

DEPARTMENT OF APPLIED CHEMISTRY
NATIONAL DIPLOMA BIOTECHNOLOGY
NATIONAL DIPLOMA FOOD TECHNOLOGY
MODULE ANALYTICAL CHEMISTRY 2BBF: THEORY CET1BT2
CAMPUS DFC
NOVEMBER EXAMINATION

DATE: $09 / 11 / 2015$
ASSESSOR
INTERNAL MODERATOR
DURATION 3 HOURS
SESSION: 8:30-11:30 DR S MAOELA MS H DU PLESSIS-FISCHER

MARKS: 150

NUMBER OF PAGES: 8 PAGES, INCLUDING A DATA SECTION.

INSTRUCTIONS: CALCULATORS ARE PERMITTED (ONLY ONE PER STUDENT).

REQUIREMENTS: MULTIPLE CHOICE ANSWER SHEET. ANSWER BOOK.

SECTION A: MULTIPLE CHOICE

Answer this section on the pink UJ MULTIPLE CHOICE ANSWER SHEET.

1. The $\% \mathrm{~T}$ of a solution with an absorbance of 0.235 is:
A. 67.4
B. 32.9
C. $\quad 45.5$
D. 58.2
2. The analytically useful half-reaction of dichromate as a strong oxidant is:
A. $\quad \mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}+14 \mathrm{H}^{+}+9 \mathrm{e}^{-} \rightarrow 2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O}$
B. $\quad \mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+14 \mathrm{H}^{+}+6 \mathrm{e}^{-} \rightarrow 2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O}$
C. $\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}+14 \mathrm{H}^{+}+6 \mathrm{e}^{-} \rightarrow 2 \mathrm{CrO}_{4}{ }^{2-}+7 \mathrm{H}_{2} \mathrm{O}$
D. $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+7 \mathrm{H}_{2} \mathrm{O}+6 \mathrm{e}^{-} \rightarrow 2 \mathrm{Cr}^{3+}+14 \mathrm{OH}^{-}$
3. A primary standard substance must possess all of the following characteristics, except one:
A. It must not be stable in air.
B. It must be soluble in the titration medium.
C. It must have a large molar mass to minimize weighing errors.
D. It must have a high purity.
4. Expressing $18.25 \%(\mathrm{~m} / \mathrm{m}) \mathrm{Fe}_{3} \mathrm{O}_{4}$ as $\%(\mathrm{~m} / \mathrm{m}) \mathrm{Fe}_{2} \mathrm{O}_{3}$, results in a \% (m/m) $\mathrm{Fe}_{2} \mathrm{O}_{3}$ equal to:
[Molar masses $\left(\mathrm{g} \mathrm{mol}^{-1}\right): \mathrm{Fe}_{3} \mathrm{O}_{4}=231.541 ; \mathrm{Fe}_{2} \mathrm{O}_{3}=159.694$]
A. 12.45%
B. 15.29%
C. 18.88%
D. 25.77%
5. The pH of the solution formed when 20.00 mL of a 0.234 M NaOH solution is mixed with 480.00 mL of distilled water is:
A. $\quad 13.37$
B. $\quad 12.23$
C. $\quad 11.21$
D. 11.97
6. An $\mathrm{HNO}_{2} / \mathrm{NO}^{2-}$ buffer of $\mathrm{pH}=3.25$, given that $\mathrm{K}_{\mathrm{a}}\left(\mathrm{HNO}_{2}\right)=7.1 \times 10^{-4}$, has an NO^{2-} : HNO_{2} ratio of:
A. $\quad 1.513$
B. 1.263
C. $\quad 1.632$
D. 1.824
7. The molarity of a 0.1700 N solution of $\mathrm{IO}_{3}{ }^{-}$used in a reaction where 10 electrons are transferred is:
A. Not calculable without seeing the balanced half-reaction equation
B. $\quad 0.1700 \mathrm{M}$
C. $\quad 1.700 \mathrm{M}$
D. $\quad 0.01700 \mathrm{M}$
8. If the absorbance of a standard 0.1321 M solution of KMnO_{4} is 0.2450 under certain operating conditions, then the concentration of an unknown KMnO_{4} solution with an absorbance of 0.1980 under identical operating conditions is:
A. $\quad 0.1456 \mathrm{M}$
B. $\quad 0.09853 \mathrm{M}$
C. $\quad 0.1068 \mathrm{M}$
D. $\quad 0.1795 \mathrm{M}$
9. The following are all abbreviations of spectroscopic techniques, except for:
A. GLC
B. FES
C. AAS
D. UV-Vis
10. The pH of a $0.25 \mathrm{M} \mathrm{NH}_{4} \mathrm{Cl}$ solution is:
$\left[\mathrm{K}_{\mathrm{b}}\left(\mathrm{NH}_{3}\right)=1.8 \times 10^{-5}\right.$]
A. 4.929
B. $\quad 6.750$
C. $\quad 3.284$
D. $\quad 11.327$
11. The OH^{-}molar concentration of a solution with a pH of 3.45 is:
A. $\quad 7.85 \times 10^{-2} \mathrm{M}$
B. $\quad 2.56 \times 10^{-4} \mathrm{M}$
C. $\quad 3.55 \times 10^{-4} \mathrm{M}$
D. $2.82 \times 10^{-11} \mathrm{M}$
12. Based on the following reaction equation and data, the limiting reagent(s) is/are:

	4A	$\mathbf{+}$	$\mathbf{2 B}$	$\mathbf{+}$	3C	$\mathbf{\rightarrow}$	\mathbf{D}
Concentration (M)	0.4444		0.2222		0.1111		
Volume (mL)	10.00		20.00		40.00		

A. reactant A
B. reactant B
C. reactant C
D. reactant A, B and C
13. The number of moles of I^{-}formed from a 1.857 g sample that assays $59.23 \%(\mathrm{~m} / \mathrm{m}) \mathrm{Mgl}_{2}$ is:
[Molar mass $\left(\mathrm{g} \mathrm{mol}^{-1}\right): \mathrm{Mgl}_{2}=278.12$]
A. $\quad 1.100 \mathrm{~mol}$
B. $\quad 2.200 \mathrm{~mol}$
C. $\quad 3.955 \times 10^{-5} \mathrm{~mol}$
D. $\quad 7.910 \times 10^{-3} \mathrm{~mol}$
14. In order to prepare 250.00 mL of a $0.20 \mathrm{~N} \mathrm{H}_{2} \mathrm{SO}_{4}$ solution for use in acid-base titrimetry, you have to dilute the following volume of $2.0 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$:
A. $\quad 25.00 \mathrm{~mL}$
B. $\quad 50.00 \mathrm{~mL}$
C. $\quad 12.50 \mathrm{~mL}$
D. $\quad 10.00 \mathrm{~mL}$
15. In order to prepare 750.00 mL of $1.00 \%(\mathrm{~m} / \mathrm{v}) \mathrm{Na}^{+}$solution from a $5.00 \%(\mathrm{~m} / \mathrm{v})$ NaCl solution, you have to dilute the following volume of the $5.00 \%(\mathrm{~m} / \mathrm{v}) \mathrm{NaCl}$ to 750.00 mL :
[Molar masses $\left(\mathrm{g} \mathrm{mol}^{-1}\right): \mathrm{Na}=22.99 ; \mathrm{NaCl}=58.443$]
A. $\quad 262 \mathrm{~mL}$
B. $\quad 381 \mathrm{~mL}$
C. $\quad 150 \mathrm{~mL}$
D. $\quad 322 \mathrm{~mL}$
16. is a separation technique in which an instrument called a \qquad produces a readout (graph) called a \qquad .:
A. Chromatography; chromatogram; chromatograph
B. Chromatograph; chromatogram; chromatography
C. Chromatography; chromatograph; chromatogram
D. Chromatogram; chromatography; chromatograph
17. Liquid chromatography is generally used for separating and determining:
A. thermally unstable and non-volatile compounds
B. thermally stable and volatile compounds
C. thermally unstable and volatile compounds
D. thermally stable and non-volatile compounds
18. If a 1.653 g sample liberates 0.2540 g of CO_{2} upon reaction with an excess of HCl , then the $\%(\mathrm{~m} / \mathrm{m}) \mathrm{Na}_{2} \mathrm{CO}_{3}$ content of the sample is:
[Molar masses $\left(\mathrm{g} \mathrm{mol}^{-1}\right): \mathrm{Na}_{2} \mathrm{CO}_{3}=105.99 ; \mathrm{CO}_{2}=44.011$]
A. 31.80%
B. 37.00%
C. 72.90%
D. 33.70%
19. The theoretical pH transition range of an acid-base indicator of $\mathrm{K}_{\mathrm{a}}=4.50 \times 10^{-6}$ is:
A. $8.65-9.65$
B. $7.65-9.65$
C. $7.65-8.65$
D. $4.35-6.35$
20. The molar concentration of concentrated $48.0 \%(\mathrm{~m} / \mathrm{m}) \mathrm{HBr}$ which has an $S G=1.51$ is:
[Molar mass ($\mathrm{g} \mathrm{mol}^{-1}$): $\mathrm{HBr}=80.9$]
A. $\quad 10.1 \mathrm{M}$
B. $\quad 9.0 \mathrm{M}$
C. $\quad 8.6 \mathrm{M}$
D. $\quad 11.4 \mathrm{M}$
21. Which of the following reagent combinations would you need if you wanted to prepare a buffer of pH 7.4 ?
$\left[\right.$ For $\mathrm{H}_{3} \mathrm{PO}_{4}: \mathrm{K}_{\mathrm{a} 1}=7.11 \times 10^{-3} ; \mathrm{K}_{\mathrm{a} 2}=6.32 \times 10^{-8} ; \mathrm{K}_{\mathrm{a} 3}=4.5 \times 10^{-13}$]
A. $\mathrm{Na}_{2} \mathrm{HPO}_{4}$ and $\mathrm{KH}_{2} \mathrm{PO}_{4}$
B. $\quad \mathrm{Na}_{3} \mathrm{PO}_{4}$ and $\mathrm{H}_{3} \mathrm{PO}_{4}$
C. $\mathrm{KH}_{2} \mathrm{PO}_{4}$ and $\mathrm{H}_{3} \mathrm{PO}_{4}$
D. $\mathrm{Na}_{2} \mathrm{HPO}_{4}$ and $\mathrm{Na}_{3} \mathrm{PO}_{4}$
22. The pH of a 0.00183 M sodium hydroxide (NaOH) solution is:
A. $\quad 10.55$
B. 10.98
C. $\quad 11.26$
D. 11.89
23. If 20.00 mL of an unknown HCl solution (Solution \mathbf{X}) is diluted to 500.00 mL , and it is found by experiment that the HCl concentration in this 500.00 mL solution is $3.00 \times 10^{-3} \mathrm{M}$, then the molar HCl concentration of Solution \mathbf{X} is:
A. $\quad 0.100 \mathrm{M}$
B. $\quad 0.0750 \mathrm{M}$
C. $\quad 3.00 \times 10^{-3} \mathrm{M}$
D. $\quad 1.2 \times 10^{-4} \mathrm{M}$
24. Select the weak acid from the list below:
A. HI
B. HNO_{3}
C. HClO_{4}
D. HNO_{2}
25. The reaction equation that best describes the reaction of magnesium ions with the disodium salt of EDTA is:
A. $\mathrm{Mg}^{2+}+\mathrm{H}_{2} \mathrm{Y}^{2-} \rightarrow \mathrm{MgY}^{2-}+2 \mathrm{H}^{+}$
B. $\mathrm{Mg}^{2+}+\mathrm{H}_{2} \mathrm{Y}^{2-} \rightarrow \mathrm{MgH}_{2} \mathrm{Y}$
C. $2 \mathrm{Mg}^{2+}+\mathrm{H}_{2} \mathrm{Y}^{2-} \rightarrow \mathrm{Mg}_{2} \mathrm{Y}+2 \mathrm{H}^{+}$
D. $\mathrm{Mg}^{2+}+\mathrm{Na}_{2} \mathrm{Y}^{2-} \rightarrow \mathrm{MgY}^{2-}+2 \mathrm{Na}^{+}$
26. How many grams of NaOH are there in 500.00 mL of a 0.175 N NaOH solution?
[Molar mass $\left(\mathrm{g} \mathrm{mol}^{-1}\right)$: $\mathrm{NaOH}=40.00$]
A. $\quad 2.19 \times 10^{-3} \mathrm{~g}$
B. $\quad 114 \mathrm{~g}$
C. $\quad 3.50 \mathrm{~g}$
D. $\quad 14.0 \mathrm{~g}$

SECTION B: LONG QUESTIONS

Answer the following questions in your answer book.

Instructions: Report the pH to two decimal places

QUESTION 1

1.1 Describe the preparation of 1000 mL of a $0.1000 \mathrm{M} \mathrm{OH}^{-}$solution from a $5 \%(\mathrm{~m} / \mathrm{v})$
$\mathrm{Ba}(\mathrm{OH})_{2}$ solution.
[Molar masses $\left(\mathrm{g} \mathrm{mol}^{-1}\right): \mathrm{OH}^{-}=17.01 ; \mathrm{Ba}(\mathrm{OH})_{2}=171.35$]
1.2 Calculate the molar concentration of:
1.2.1 100.00 mL of $5 \%(\mathrm{~m} / \mathrm{v}) \mathrm{NaCl}$
[Molar mass $\left.\left(\mathrm{g} \mathrm{mol}^{-1}\right): \mathrm{NaCl}=58.44\right]$
1.2.2 250.00 mL of 650 ppm HCl
[Molar mass $\left.\left(\mathrm{g} \mathrm{mol}^{-1}\right): \mathrm{HCl}=36.46\right]$
1.2.3 2 L of $450 \mathrm{ppt} \mathrm{HNO}_{3}$
[Molar mass $\left.\left(\mathrm{g} \mathrm{mol}^{-1}\right): \mathrm{HNO}_{3}=63.01\right]$

QUESTION 2

2.1 Calculate the pH of a mixture of 75.00 mL of $0.1265 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ and 160.00 mL of 0.1265 M KOH .
2.2 Calculate the relevant reagent volumes and/or masses required to prepare the following buffers:
2.2.1 A buffer of $\mathrm{pH}=9.15$ from $0.2843 \mathrm{M} \mathrm{NH}_{3}$ and 1500.00 mL of 0.2592 M HCl .
$\left[\mathrm{K}_{\mathrm{b}}\left(\mathrm{NH}_{3}\right)=1.75 \times 10^{-5}\right]$
2.2.2 1000.00 mL of a buffer of $\mathrm{pH}=4.90$ from $0.1783 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}$ and 0.2691 M $\mathrm{CH}_{3} \mathrm{COONa}$.
$\left[\mathrm{K}_{\mathrm{a}}\left(\mathrm{CH}_{3} \mathrm{COOH}\right)=1.75 \times 10^{-5}\right]$
2.3 Calculate the pH in the titration of 15.00 mL of $0.2000 \mathrm{M} \mathrm{Ba}(\mathrm{OH})_{2}$ with 0.1500 M HCl at the following stages in the titration:
2.3.1 Initial pH .
2.3.2 After addition of 5.00 mL of HCl solution.

QUESTION 3

3.1 The calcium present in 0.5839 g of a sample was determined by precipitating the Ca^{2+} as $\mathrm{CaC}_{2} \mathrm{O}_{4}$. After filtering, washing and re-dissolving the precipitate in acid, the liberated oxalate ($\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}$) was titrated against 21.69 mL of a 0.05573 M KMnO_{4} solution, during which CO_{2} and Mn^{2+} were reaction products in acid medium. Calculate the weight percentage of Ca in the sample, after writing and balancing all half-reaction and overall reaction equations occurring in acid medium.
[Molar mass $\left(\mathrm{g} \mathrm{mol}^{-1}\right): \mathrm{Ca}=40.08$]
3.2 An EDTA solution was standardised by titration against a zinc solution which was prepared by dissolving 0.6593 g of pure zinc metal in 5 mL of HCl and diluting to 500.00 mL . A volume of 10.95 mL of the EDTA solution was required to titrate 10.15 mL of this zinc solution. Then 12.55 mL of this EDTA solution was used to titrate the calcium in a 1.562 g sample of powdered milk. Calculate the \% (m / m) Ca^{2+} in powdered milk.
[Molar masses ($\mathrm{g} \mathrm{mol}^{-1}$): $\mathrm{Ca}=40.08 ; \mathrm{Zn}=65.37$]

QUESTION 4

4.1 Describe the general use of gas chromatography (GC).
4.2 Describe the function of the following GC components:
4.2.1 Detector
4.2.2 Oven
4.2.3 Column

DATA
$K_{w}=1 \times 10^{-14}$
$\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \left(\mathrm{C}_{\mathrm{b}} / \mathrm{C}_{\mathrm{a}}\right)=\mathrm{pK} \mathrm{a}_{\mathrm{a}}+\log \left(\mathrm{n}_{\mathrm{b}} / \mathrm{n}_{\mathrm{a}}\right)$
$c=f \times \lambda$
$E=h \times f$
$\mathrm{T}=\mathrm{P}_{\text {out }} / \mathrm{P}_{\text {in }}$
$A=a \times b \times C$
$\% \mathbf{T}=\mathbf{P}_{\text {out }} / \mathbf{P}_{\text {in }} \times \mathbf{1 0 0}$
$A=-\log _{10} T$

