JOHANNESBURG

FACULTY OF SCIENCE

DEPARTMENT OF APPLIED CHEMISTRY NATIONAL DIPLOMA: ANALYTICAL CHEMISTRY				
MODULE		CET1BP3 PHYSICAL CHEMISTRY 2		
CAMPUS				
		NOVEMBER EXAMINATION		
DATE: 12/11/2015			SESSION:	12:30-15:30
ASSESSOR			MR	PP MONAMA
INTERNAL MODERATOR				DR D NKOSI
DURATION	3 HOURS			MARKS 150

NUMBER OF PAGES: 9 PAGES, INCLUDING 2 ANNEXURES
INSTRUCTIONS: ANSWER SECTION A ON THE MULTIPLE CHOICE ANSWER SHEET AND SECTION B IN THE ANSWER SCRIPT PROVIDED.

FOR SECTION B, GIVE ALL NUMERICAL ANSWERS TO THE CORRECT NUMBER OF SIGNIFICANT FIGURES AND WITH APPROPRIATE UNITS.

CONSULT THE DATA SHEET AND THE PERIODIC TABLE FOR ALL SUPPLEMENTARY INFORMATION.

CALCULATORS ARE PERMITTED (ONLY ONE PER STUDENT).
REQUIREMENTS: ANSWER SCRIPT
MULTIPLE CHOICE ANSWER SHEET

SECTION A

1. Which one of the following statements is correct?
A. When heat is transferred from the surroundings to the system, q has a negative value.
B. When work is done on the system by the surroundings, w has a positive value.
C. During an endothermic process, such as the melting of ice, heat flows out of the system into its surroundings.
D. The temperature change experienced by an object when it absorbs a certain amount of energy is determined by its standard molar entropy. work is done on the system by the surroundings, w has a positive value.
E. When heat is lost by the system to the surroundings, q has a positive value.
2. How much heat is needed to raise the temperature of 125 g of ethanol $\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right)$ from $25.2^{\circ} \mathrm{C}$ to $32.5^{\circ} \mathrm{C}$? The specific heat capacity of ethanol is $1.13 \mathrm{~J}^{-\mathrm{g}^{-1}} \cdot \mathrm{~K}^{-1}$.
A. $\quad 3.56 \mathrm{~kJ}$
B. $\quad 4.59 \mathrm{~kJ}$
C. $\quad 3.06 \mathrm{~kJ}$
D. $\quad 4.08 \mathrm{~kJ}$
E. $\quad 1.03 \mathrm{~kJ}$
3. For which of the following reactions would the $\Delta \mathrm{H}^{\circ}$ for the reaction be labelled $\Delta H_{f}{ }^{\circ}$?
A. $\quad \mathrm{PCl}_{3}(g)+1 / 2 \mathrm{O}_{2}(g) \rightarrow \mathrm{POCl}_{3}(g)$
B. $\quad 1 / 2 \mathrm{~N}_{2} \mathrm{O}(g)+1 / 4 \mathrm{O}_{2}(g) \rightarrow \mathrm{NO}(g)$
C. $\mathrm{Ca}(s)+\mathrm{H}_{2}(g)+\mathrm{O}_{2}(g) \rightarrow \mathrm{Ca}(\mathrm{OH})_{2}(s)$
D. $\mathrm{MgO}(s)+\mathrm{SO}_{2}(g) \rightarrow \mathrm{MgSO}_{3}(s)$

E The $\Delta \mathrm{H}^{\circ}$ for all these reactions would be labelled $\Delta \mathrm{H}_{\mathrm{f}}{ }^{\circ}$.
4. Consider the following reaction:
$2 \mathrm{~B}(\mathrm{aq})+3 \mathrm{Y}(\mathrm{aq}) \rightarrow \mathrm{B}_{2} \mathrm{Y}_{3}(\mathrm{aq})$
At a particular temperature, the molar concentration of substance Y varies with time in the following manner:

Time $(\mathrm{min}):$	$[\mathrm{Y}] \mathrm{mol}_{\mathrm{m}} \mathrm{dm}^{-3}$
0.00	0.150
4.00	0.0800

What is the reaction rate (in mol.dm ${ }^{-3} \cdot \mathrm{~s}^{-1}$) for the consumption of substance B ?
A. $\quad 2.92 \times 10^{-4}$
B. $\quad 1.75 \times 10^{-2}$
C. $\quad 1.17 \times 10^{-2}$
D. $\quad 1.94 \times 10^{-4}$
E. $\quad 4.38 \times 10^{-4}$
5. At a given temperature, a first order reaction has a rate constant of $5.32 \times 10^{-3} \mathrm{~s}^{-1}$. The time required for the reaction to be 78.6% complete is:

A $\quad 45.3 \mathrm{~s}$
B $\quad 690$ s
C 290 s
D $\quad 51.2 \mathrm{~s}$
E 542 s
6. Given the following reaction: $2 \mathrm{CB}(g)+\mathrm{B}_{2}(g) \rightarrow 2 \mathrm{CB}_{2}(g)$

If the mechanism below was proposed, then this implies that:

$$
\begin{aligned}
& \mathrm{CB}(g)+\mathrm{CB}(g) \rightarrow \mathrm{C}_{2} \mathrm{~B}_{2}(g) \ldots(1) \\
& \mathrm{C}_{2} \mathrm{~B}_{2}(g) \rightarrow \mathrm{CB}(g)+\mathrm{CB}(g) \ldots \ldots(2) \\
& \mathrm{C}_{2} \mathrm{~B}_{2}(g)+\mathrm{B}_{2}(g) \rightarrow 2 \mathrm{CB}_{2}(g) \ldots \ldots(3)(\mathrm{SLOW})
\end{aligned}
$$

A. the formation of $\mathrm{CB}(g)$ is the rate determining step
B. the rate of formation of $\mathrm{CB}_{2}(g)$ is greater than that of $\mathrm{CB}(g)$
C. the intermediate is $\mathrm{CB}(g)$
D. the overall reaction order is three
E. the rate of formation of $\mathrm{CB}_{2}(g)$ is less than that of $\mathrm{CB}(g)$
7. Consider the following reaction at equilibrium at $135^{\circ} \mathrm{C}$:
$2 \mathrm{AB}_{3}(g) \rightleftharpoons \mathrm{A}_{2}(g)+3 \mathrm{~B}_{2}(g)$
If 2.00 mol of $\mathrm{AB}_{3}(g)$ were placed into a $10.0 \mathrm{dm}^{3}$ container and the concentration of $\mathrm{B}_{2}(\mathrm{~g})$ at equilibrium was $0.0150 \mathrm{~mol}^{2} \mathrm{dm}^{-3}$, if the gas constant R is $8.20578 \times 10^{-2} \mathrm{~L} . \mathrm{atm} \cdot \mathrm{K}^{-1} \cdot \mathrm{~mol}^{-1}$, then the value of the equilibrium constant $\left(K_{p}\right)$ is:
A. $\quad 4.67 \times 10^{-7}$
B. $\quad 5.74 \times 10^{-5}$
C. $\quad 4.17 \times 10^{-10}$
D. $\quad 5.24 \times 10^{-4}$
E. $\quad 1.22 \times 10^{-3}$
8. For the reaction $2 \mathrm{H}_{2} \mathrm{~S}(g) \rightleftharpoons 2 \mathrm{H}_{2}(g)+\mathrm{S}_{2}(g), \mathrm{K}_{\mathrm{c}}=8000$. What will happen when 0.0100 mol of gaseous hydrogen sulphide $\left(\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})\right.$), 0.150 mol of gaseous hydrogen ($\mathrm{H}_{2}(g)$) and 0.150 mol of gaseous sulphur ($\mathrm{S}_{2}(g)$) are added to a $2.00 \mathrm{dm}^{3}$ container and allowed to equilibrate?
A. The amount of $\mathrm{H}_{2} \mathrm{~S}$ will be halved.
B. More $\mathrm{H}_{2} \mathrm{~S}$ will be formed.
C. More H_{2} will be formed than S_{2}.
D. More S_{2} will be formed than H_{2}.
E. The amount of H_{2} formed will be half of the amount of S_{2} formed.
9. Which one of the following statements is incorrect?
A. The equilibrium constant of a reaction equation where the coefficients have been multiplied throughout by a number is the equilibrium constant raised to a power equal to that number.
B. Reducing the volume of a gaseous equilbrium mixture causes the system to shift in the direction that increases the number of moles of gas.
C. If a pure solid is involved in a heterogeneous equilibrium, its concentration is not included in the equilibrium-constant expression for the reaction.
D. The reaction quotient (Q) will equal the equilibrium constant $\left(\mathrm{K}_{\mathrm{C}}\right)$ only if the system is at equilibrium.
E. A catalyst increases the rate at which equilibrium is achieved, but it does not change the composition of the equilibrium mixture.
10. The pH of $0.00520 \mathrm{~mol} . \mathrm{dm}^{-3} \mathrm{BH}$ is 10.8 . BH is therefore a
A. weak acid
B. weak base
C. strong base
D. strong acid
E. strong electrolyte
11. A $0.122 \mathrm{~mol}^{2} \mathrm{dm}^{-3}$ solution of a weak acid HX is dissociated by 7.42%. The pH of the solution and the K_{a} for the weak acid are:
A. $\quad 2.04$ and 6.72×10^{-4}
B. $\quad 0.914$ and 9.05×10^{-3}
C. $\quad 2.04$ and 7.26×10^{-4}
D. $\quad 1.49$ and 4.89×10^{-3}
E. $\quad 0.914$ and 7.28×10^{-4}
12. Consider the reaction: $\mathrm{Cu}^{2+}(a q)+4 \mathrm{CN}^{-}(a q) \rightleftharpoons \mathrm{Cu}(\mathrm{CN})_{4}{ }^{2-}(a q)$

A volume of $100 \mathrm{~cm}^{3}$ of a $0.0225 \mathrm{~mol}^{2} \mathrm{dm}^{-3}$ solution of copper(II) nitrate was mixed with $150 \mathrm{~cm}^{3}$ of a $0.100 \mathrm{~mol}_{\mathrm{dm}} \mathrm{dm}^{-3}$ solution of potassium cyanide in a single container. The resulting mixture was then allowed to reach equilibrium. If thereafter a volume of $50.00 \mathrm{~cm}^{3}$ of a $0.0025 \mathrm{~mol}^{2} \mathrm{dm}^{-3}$ solution of nitric acid was added to the equilibrium mixture, then
A. the concentration of $\mathrm{Cu}(\mathrm{CN})_{4}{ }^{2-}(a q)$ increased
B. the concentration of $\mathrm{Cu}(\mathrm{CN}) 4^{2-}(\mathrm{aq})$ remained unchanged
C. the concentration of $\mathrm{Cu}^{2+}(a q)$ decreased
D. copper (II) nitrate precipitated from the solution
E. the concentration of $\mathrm{Cu}^{2+}(a q)$ increased
13. Which one of the following statements is incorrect?
A. In any voltaic cell the electrons flow from the anode through the external circuit to the cathode.
B. The more positive the value of E° red the greater the driving force for reduction.
C. A positive value of the cell potential indicates a nonspontaneous process.
D. The half-reaction with the smallest (least positive) reduction potential is most easily reversed as an oxidation.
E. In any voltaic cell the anions always migrate toward the anode and cations toward the cathode.
14. According to the following cell diagram, which species undergoes reduction?

$$
\mathrm{Sn}\left|\mathrm{Sn}^{2+}\right|\left|\mathrm{MnO}_{2}\right| \mathrm{Mn}^{2+}(\mathrm{Pt})
$$

A $\quad \mathrm{Sn}$
B $\quad \mathrm{Sn}^{2+}$
C $\quad \mathrm{Pt}$
D $\quad \mathrm{MnO}_{2}$
$\mathrm{E} \quad \mathrm{Mn}^{2+}$
15. Which transformation cannot take place at the cathode of an electrochemical cell?
A. $\quad \mathrm{MnO}_{4}{ }^{-} \rightarrow \mathrm{MnO}_{4}{ }^{2-}$
B. $\quad \mathrm{Cr}_{2} \mathrm{O}_{7}^{2-} \rightarrow \mathrm{Cr}^{3+}$
C. $\quad \mathrm{PbSO}_{4} \rightarrow \mathrm{~Pb}$
D. $\mathrm{ClO}^{-} \rightarrow \mathrm{Cl}^{-}$
E. $\quad\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-} \rightarrow\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}$

SECTION B

QUESTION 1

1.1 Distinguish between the terms "non-renewable energy" and "renewable energy".
1.2 The combustion of liquid toluene $\left(\mathrm{C}_{7} \mathrm{H}_{8}\right)$ produces gaseous carbon dioxide and water liquid. When 1.500 g sample of liquid toluene is combusted with excess oxygen gas in a bomb calorimeter, the temperature of the calorimeter increases from $25.000^{\circ} \mathrm{C}$ to $26.413^{\circ} \mathrm{C}$. In a separate experiment the heat capacity of the calorimeter was measured to be $45.06 \mathrm{~kJ}^{\circ}{ }^{\circ} \mathrm{C}^{-1}$.
1.2.1 Write the balanced chemical equation for the reaction.
1.2.2 Calculate the heat of reaction for the combustion of a mole of toluene in this calorimeter.
1.3 Use the information supplied in the data sheet to calculate the enthalpy change (in $\mathrm{kJ.mol}^{-1}$) accompanying the formation of $10.0 \mathrm{dm}^{3}$ of carbon dioxide gas at 715 torr and $19.0^{\circ} \mathrm{C}$ in the following reaction:

$$
\begin{equation*}
\mathrm{NaHCO}_{3}(s)+\mathrm{H}^{+}(a q) \rightarrow \mathrm{Na}^{+}(a q)+\mathrm{H}_{2} \mathrm{O}(\Lambda)+\mathrm{CO}_{2}(g) \tag{10}
\end{equation*}
$$

QUESTION 2

2.1 The rate constant for the decomposition of hydrogen iodide (HI) at $700^{\circ} \mathrm{C}$ equals $0.00160 \mathrm{M}^{-1} . \mathrm{s}^{-1}$:
$2 \mathrm{HI}(g) \rightarrow \mathrm{H}_{2}(g)+\mathrm{I}_{2}(g)$
2.1.1 Based on the units of the rate constant, is the reaction first order or second order? Explain.
2.1.2 Suppose a reaction is started with 0.0552 mol of HI in a volume of $735 \mathrm{~cm}^{3}$. How many minutes will the reaction take for the moles of HI to drop by 66.6% ?
2.1.3 Calculate the moles of HI that will remain after 15 minute and 25 seconds.
2.1.4 Calculate the half-life (in minutes) for the reaction.
2.2 Suppose a reaction occurs according to the following mechanism:

Step 1:	$2 \mathrm{~A} \rightleftharpoons \mathrm{~A}_{2}$	(fast)
Step 2.	$\mathrm{A}_{2}+\mathrm{F}$	

2.2.1 Write the rate Law for the forward reaction in step1.
2.2.2 Write the rate Law for the reverse reaction in step1.
2.2.3 Write the rate Law for the rate determining step.
2.2.4 Write the balanced chemical equation for the overall reaction.
2.2.5 Write the rate Law in terms of the concentrations of the reactants in the overall balanced equation.
2.2.6 Identify any intermediate/s in the mechanism.

QUESTION 3

Consider the following equilibrium for which $\Delta \mathrm{H}=+23.12 \mathrm{~kJ} / \mathrm{mol}$:
$\mathrm{NiBr}_{2}(s)+\mathrm{H}_{2}(g) \rightleftharpoons \mathrm{Ni}(s)+2 \mathrm{HBr}(g)$
When 2.00 moles of $\mathrm{NiBr}_{2}(s)$ and $\mathrm{H}_{2}(g)$ were each placed into an evacuated $10.0 \mathrm{dm}^{3}$ container at 578.25 K and the reaction reached equilibrium the pressure in the container was $9.38 \times 10^{3} \mathrm{mmHg}$. The volume of the container was then changed and the reaction was allowed to reach equilibrium for the second time. At the second equilibrium it was found that the concentration of $\mathrm{HBr}(g)$ was 0.0855 M . Calculate the new volume of the container.

QUESTION 4

4.1 A $900 \mathrm{~cm}^{3}$ buffer solution of pH of 4.70 contains $\mathbf{P ~ m o l}$ of a weak acid and \mathbf{Q} mol of a salt of its conjugate base. When $100 \mathrm{~cm}^{3}$ of a $0.0100 \mathrm{~mol}_{\mathrm{dm}}{ }^{-3}$ solution of sodium hydroxide was added to this buffer solution the pH changes by 0.300 pH units. If the K_{a} value for the weak acid is 1.38×10^{-5}, calculate the values of \mathbf{P} and \mathbf{Q}.
4.2 A mixture is first made of $150 \mathrm{~cm}^{3}$ of a $0.200 \mathrm{~mol} . \mathrm{dm}^{-3}$ solution of silver nitrate and $\mathbf{y ~ c m}{ }^{3}$ of a 2.50 mol.dm ${ }^{-3}$ solution of potassium cyanide. Thereafter, $100 \mathrm{~cm}^{3}$ of a $0.120 \mathrm{~mol} . \mathrm{dm}^{-3}$ solution of potassium chloride is added to this mixture and the resulting solution is diluted to $2.00 \mathrm{dm}^{3}$. Calculate the value of \mathbf{y} that will just prevent the precipitation of silver chloride.
[30]

QUESTION 5

5.1 Balance the following reaction and construct an electrochemical cell that represents this reaction by using the correct cell notation and an appropriate junction:

Oxidation of Pb to PbO_{2} with ClO^{-}to Cl^{-}(alkali medium)
5.2 The minerals of a 126 kg ore were dissolved by acid leaching to make up a solution whose volume was $50.0 \mathrm{dm}^{3}$. When this solution was analysed it was found to contain $0.445 \mathrm{~mol} . \mathrm{dm}^{-3}$ of $\mathrm{Sn}^{2+}(\mathrm{aq})$ ions and $0.0355 \mathrm{~mol} . \mathrm{dm}^{-3}$ of $\mathrm{Pb}^{2+}(a q)$ ions. The solution was then subjected to electrolysis at $25.0^{\circ} \mathrm{C}$. Calculate the mass percentage purity of the metal that plated last.

DATA SHEET

```
0}\mp@subsup{}{}{\circ}\textrm{C}=273.15\textrm{K
Standard pressure = 1 atm = 101.325 kPa = 760 mmHg= 760 torr = 1.01325 bar
R}=8.31451 L.kPa .K-1.mol-1/
    = 8.31451 J.K-1.mol
    = 8.31451 x10-2 L.bar .K-1.mol
    = 8.20578 x10-2 L.atm .K-1.mol
    = 62.364 L.torr .K}\mp@subsup{}{}{-1}.\mp@subsup{\textrm{mol}}{}{-1
F = 9.6485 x 104 C.mol
V = J.C-1
```

Equilibrium constants ($\mathrm{T}=25.0^{\circ} \mathrm{C}$)
$\mathrm{K}_{\text {sp }}($ Silver chloride, AgCl$)=1.80 \times 10^{-10}$
$\mathrm{K}_{\mathrm{f}}\left(\mathrm{Ag}(\mathrm{CN})_{2^{-}}\right)=1.00 \times 10^{21}$

Standard reduction potentials $\left(T=25.0^{\circ} \mathrm{C}\right)$

$\mathrm{E}^{\circ} \mathrm{red}\left(\mathrm{Pb}^{2+} / \mathrm{Pb}\right)=-0.126 \mathrm{~V}$
$\mathrm{E}^{\circ} \mathrm{red}\left(\mathrm{Sn}^{2+} / \mathrm{Sn}\right)=-0.136 \mathrm{~V}$

Standard enthalpy of formation $\left(T=25.0^{\circ} \mathrm{C}\right)$

$\Delta H_{\mathrm{f}^{\circ}}, \mathrm{CO}_{2}(\mathrm{~g})$	$=-393.5 \mathrm{~kJ} . \mathrm{mol}^{-1}$
$\Delta \mathrm{H}_{\mathrm{f}}{ }^{\circ}, \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$	$=-285.83 \mathrm{kJ.mol}^{-1}$
$\Delta \mathrm{H}_{\mathrm{f}}{ }^{\circ}, \mathrm{H}^{+}(a q)$	$=0 \mathrm{~kJ} . \mathrm{mol}^{-1}$
$\Delta \mathrm{H}_{\mathrm{f}}{ }^{0}, \mathrm{Na}^{+}(a q)$	$=-240.10{\mathrm{~kJ} . \mathrm{mol}^{-1}}$
$\Delta \mathrm{H}_{\mathrm{f}}{ }^{\circ}, \mathrm{NaHCO}_{3}(\mathrm{~s})$	$=-947.7 \mathrm{~kJ} . \mathrm{mol}^{-1}$

UNIVERSITY OF JOHANNESBURG

Department of Applied Chemistry

Ce 140.12	${ }^{59} \underset{140.91}{ } \mathbf{P r}$	${ }^{60} \mathbf{N d}$	Pm 146.92	Sm	Eu	Gd	Tb 158.93	Dy 162.5	Но 164.9:	Er 167.26	Tm 168.93	$\mathbf{Y b}$	Lu
90	${ }^{91}$	92	${ }^{93}$	${ }^{94}$	95	96	${ }^{97}$	${ }^{98}$	99	100	101	102	${ }^{103}$
Th \qquad	$\mathbf{P a}$ 1231.04	$\underset{238.03}{\mathbf{U}}$	Np	$\mathbf{P u}_{(244)}$	$\operatorname{Am}_{(234)}$	$\mathrm{Cm}_{(247)}$	Bk	$\underset{(251)}{\mathbf{C f}}$	$\underset{(252}{\text { Es }}$	$\mathbf{F m}_{(257)}$	Md	$\underset{(259)}{\text { No }}$	$\mathbf{L r}$ ${ }_{(260)}$

