

PROGRAM

: NATIONAL DIPLOMA

ENGINEERING: ELECTRICAL

ENGINEERING: COMPUTER SYSTEMS

SUBJECT

: MEASUREMENTS III

CODE

: EMA3111

DATE

: SUMMER SSA EXAMINATION 2015

8 DECEMBER 2015

DURATION

: (SESSION 1) 08:00 - 11:00

WEIGHT

: 40:60

TOTAL MARKS : 100

ASSESSOR

: MR EM LOOTS

MODERATOR : MR J SEBASTIAN

2235

NUMBER OF PAGES : 4 PAGES

INSTRUCTIONS TO STUDENTS

- 1. ATTEMPT ALL QUESTIONS.
- 2. 100 MARKS = 100%.
- 3. MARKS WILL BE DEDUCTED FOR UNTIDY AND UNREADABLE WORK.
- ALL DIAGRAMS AND SKETCHES MUST BE DRAWN NEATLY AND IN PROPORTION.
- 5. ALL DIAGRAMS AND SKETCHES MUST BE LABELED CLEARLY.
- QUESTIONS MAY BE ANSWERED IN ANY ORDER, BUT ALL PARTS OF A 6. QUESTION MUST BE GROUPED TOGETHER.
- QUESTION PAPERS MUST BE HANDED IN WITH EXAMINATION 7. SCRIPTS.

QUESTION 1 - TRUE OR FALSE STATEMENTS

Negative marking applies for this question.

Answer true for a statement which you agree with and false to statements that you disagree with. A correct answer results in one mark allocated to you while an incorrect answer will result in half a mark being deducted

1.1	A Hay Bridge is a type of DC bridge circuit similar to a Wheatstone bridge.	T/F		
1.2	A medical researcher can use an oscilloscope to measure brain waves.	T/F		
1.3	Bandwidth is the frequency range of the oscilloscope, usually measured in Megahertz (MHz).	T/F		
1.4	Rise time is the time taken by a step or a pulse to rise from 30 % to 70 % of its amplitude level.	T/F		
1.5	The trigger level knob controls the position of the waveform on the vertical axis.	T/F		
1.6	The horizontal position knob allows you to align the displayed waveform with the horizontal divisions of the display graticule.	T/F		
1.7	A trigger defines when a signal is acquired and stored in memory.	T/F		
1.8	Cursor measurements use algorithms stored in the oscilloscope's firmware.	T/F		
1.9	Active probes are used for very high frequency measurements.	T/F		
1.10	A current probe is connected directly to the circuit.	T/F		
		[<u>10</u>]		
QUESTION 2				
2.1	Differentiate between the four different trigger modes used by digital oscilloscopes.	(8)		
2.2	Explain the three input coupling methods.	(3)		
2.3	State the advantages a scope probe provides when using digital oscilloscopes.	(2)		
		1401		

[<u>13</u>]

QUESTION 3 3.1 Describe the principle actions of a spectrum analyzer. (5)3.2 Discuss two different types of wave meters (6)[11]**QUESTION 4** 4.1 Explain an important property of the exponential distribution (4)4.2 State the difference between regression and correlation (4)4.3 Differentiate between variance and standard deviation. (4)A batch of 200 μ F capacitors with a tolerance of + 20 % was tested. 4.4 The following values were obtained during the test: $188 \mu F$, $174 \mu F$, $191 \mu F$, $198 \mu F$, $175 \mu F$, $183 \mu F$, $200 \mu F$, $195 \mu F$, 189 uF, 216 uF Determine: 4.1.1 the standard deviation, 4.1.2 the average and 4.1.3 the variance. (6)[18] **QUESTION 5** 5.1 Differentiate between voltmeter loading effect and ammeter loading effect of an instrument. (6)5.2 If the specifications of a standard ammeter are given as 60 Ω and 2 mA, Calculate the values of the shunt resistors for an instrument with ranges of 2 A, 20A and 50 A full-scale deflection. Use both types of design. (6) 5.3 A series connected ohmmeter has a total internal resistance of 30 k Ω and uses a standard 5 V cell.

Calculate: The scale mark values in Ω , for

25 %, 50 % and 75 % of FSD: (Full Scale Deflection). The percentage deflection for 1 k Ω , 10 k Ω , 100 k Ω .

(6)

[18]

5.3.1

5.3.2

QUESTION 6

6.1	How can frequency dividers be used to extend the range of frequency counter.	f a (5)
6.2	Define the terms precision and repeatability.	(4)
6.3	What is meant by practical standards?	(3)
		[12]
QUES'	<u>ΓΙΟΝ 7</u>	
7.1	Sketch the bridge circuit and give the balance requirements.	(4)
7.2	Explain the two types of comparative measurement.	(4)
		[<u>8</u>]
QUES'	<u>ΓΙΟΝ 8</u>	
8.1	Sketch the block diagram of a modulated output generator.	[<u>10</u>]
		<u>TOTAL = 100</u>