

PROGRAM

: NATIONAL DIPLOMA

ENGINEERING: COMPUTER SYSTEMS

ENGINEERING: ELECTRICAL

SUBJECT

: DIGITAL SYSTEMS II

CODE

: EDS231

DATE

: SUMMER EXAMINATION 2015

19 NOVEMBER 2015

DURATION

: (SESSION 2) 12:30 - 15:30

WEIGHT

: 40:60

TOTAL MARKS

: 100

ASSESSOR

: MR J A NIEUWOUDT

MODERATOR

: MR V RAMESHAR

2247

NUMBER OF PAGES: 3 PAGES AND 1 ANNEXURE

INSTRUCTIONS

- ONE CALCULATOR MAY BE USED.
- 2. ATTEMP ALL QUESTIONS
- 3 ALL STEPS MUST BE SHOWN
- 4. UNTIDY WORK WILL BE PENALISED
- WITH THE EXCEPTION OF SKETCHES ALL WORK MUST BE DONE IN 5. PEN.
- 6. **NB**: HAND IN DIAGRAM 1 WITH ANSWER SHEET

REQUIREMENTS

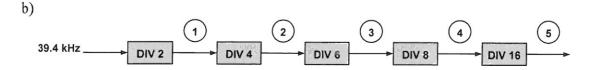
: NONE

QUESTION 1

- 1.1 When is a pull-up resistor required when interfacing TTL and CMOS? (1)
- 1.2 Explain with *drawings* how you will be handling unused TTL inputs. (4)
- 1.3 In what output state does a TTL circuit sink current from the load? (1)
- 1.4 An unconnected TTL input acts as a LOW. (T or F) (1)

[7]

(4)


QUESTION 2

- 2.1 Explain the term 'non-retriggerable one-shot' and also clearly show the result on a timing diagram.
- 2.2 A certain application requires a one-shot with a pulse width of approximately 100 ms. Using a 74121 mono-stable, **show** the connections **and** calculate the component values. Select $R_{EXT} = 39 \text{ k}\Omega$ and calculate the necessary capacitance. (6)
- 2.3 Design a *one-shot*, using a 555 timer that will produce a 0.25 sec output pulse. (Use $C_1 = 1 \mu F$). Draw the block <u>diagram</u> to show how the external components are connected. (6)

[16]

QUESTION 3

- 3.1 How do synchronous and asynchronous counters differ? (1)
- 3.2 Show how the 74LS93A counter IC can be used as a (1) MOD 13 and (2) MOD 15 counters. (Show only external connection layout). (6)
- 3.3 Design and Draw a synchronous counter to produce the following binary sequence. Use J K flip-flops. Answer on the annexure sheet (Diagram 1) provided. 1, 4, 3, 5, 7, 6, 2, 0, ... (14)
- For each of the cascaded counter configurations, determine the frequency of the waveform at each point indicate by a circled number, and determine the overall modulus.

[31]

QUESTION 4

4.1	Why are shift registers considered as basic memory devices?	(2)
4.2	What is the storage capacity of a register that can retain two bytes of data?	(2)
4.3 a) b) c) d)	A MOD 10 <i>Ring</i> counter requires a minimum of: ten flip-flops five flip-flops four flip-flops twelve flip-flops	(1)
4.4	Draw the <i>logic</i> diagram for a four-bit <i>Johnson</i> counter and also draw the <i>timing</i> diagram for the counter.	(6)
4.5	Draw a single 4-bit shift register that have a <i>Parallel</i> data in loaded and <i>serial</i> data out, but also have the facility to load data out <i>parallel</i> with an enable /shift pulse through AND /OR gates.	(6) [<u>17]</u>
QUE	STION 5	
5.1	Draw the 2 ^s complementing circuit.	(4)
5.2	Draw and explain how a Successive-Approximation analog-to-digital convertor works. (Give drawings to show how the end result is achieved).	(8) [<u>12]</u>
QUE	STION 6	
6.1	What is the smallest unit of data that can be stored in a memory?	(1)
6.2	What is the bit capacity of a memory that can store 256 bytes of data?	(1)
6.3	What is a write operation?	(1)
6.4	What is a read operation?	(1)
6.5	How is a given unit of data located in a memory?	(1)
5.6	Describe the difference between a RAM and a ROM.	(2)
5.7	Explain how SRAMs and DRAMs differ.	(2)
5.8	Draw and explain how a FLASH MEMORY when programed is storing (i) a logic 1 and (ii) a logic 0.	(8) [<u>17]</u>

DIAGRAM 1

DIGITAL	SYSTEMS 2	
STUDEN	IT SURNAME	•

DIGITAL OTOTLING 2	
STUDENT SURNAME:	STUDENT NUMBER:

	CURRENT			T	
A	В	C	W	X	Y
	-	-			
	+				

OUTPUT	TRANSIT ION	FLIP- FLOP	INPUT S
Qn	Qn + 1	J	K

	0	1
00		
01		
10		
11		

	0	1
00		
01		
10		
11		

	0	1
00		
01		
10		
11		

	0	1
00		
01		
10		
11		

	0	1
00		
01		
10		
11		

	0	1
00		
01		
10	-	
11		

DRAW THE SYNCHRONOUS COUNTER HERE