

FACULTY OF SCIENCE

		DEPARTMENT OF MATHEMATICS	5
MODULE:	МАТ	² 2B4	
CAMPUS:	APK	<u> </u>	
EXAM:	NOV	EMBER 2015	
DATE:		5 NOVEMBER 2015	SESSION: 8:00 - 10:00
ASSESSOR(S):		C MARAIS	
INTERNAL MODERAT	OR:	E JOUBERT	
DURATION:		2 HOURS	MARKS: 50
SURNAME AND INIT	ALS:		
STUDENT NUMBER:			
CONTACT NR:			
NUMBER OF PAGES:	11 PA	GES	
INSTRUCTIONS:		/ER ALL THE QUESTIONS IN PEN	

GOOD LUCK!

Question 1

Answer the following True or False questions and give a short justification/counter-example:

a) If G and G' are cyclic then $G \oplus G'$ is cyclic.

TRUE	
FALSE	

b) If G is a finite cyclic group and m is a positive divisor of |G|, then G contains an element of order m.

TRUE	
FALSE	

c) If $\,p\,$ is prime, then $\,\mathbb{Z}_p\,$ is a group with respect to multiplication.

[2]

TRUE	
FALSE	

MAT2B40 - 3 -

d) If the order of a group, $\,G$, is 20, then $\,g^{^{20}}=e\,$ for all $\,g\in G$.

[2]

e) If $\varphi: G \to G'$ is a homomorphism with $G / Ker \varphi$ isomorphic to G', then φ is onto. [2]

TRUE	
FALSE	

MAT2B40 - 4 -

Question 2

Prove that a subgroup H of G is normal in G if and only if $xHx^{-1} \subseteq H$ for all $x \in G$. [4]

MAT2B40 -5-

[1]

Question 3

Consider the element $\alpha = (541)(3742)(1265) \in S7$.

a) Write lpha in disjoint cycle from.

b) What is the order of α ?

Question 4

a) List all the elements of the group \mathbb{Z} / $\langle 12 \rangle$ and hence find the order of \mathbb{Z} / $\langle 12 \rangle$. [3]

b) Does $\mathbb{Z}/\langle 12 \rangle$ have a subgroup of order 7? Why/why not? [2]

MAT2B40 - 6 -

c) Show that $\mathbb{Z} \, / \langle 12 \rangle$ is cyclic.

[2]

d) Find all the elements of order 6 in $\mathbb{Z} \, / \left< 12 \right>$.

[2]

MAT2B40 -7 -

Question 5

Let
$$H = \left\{ \begin{bmatrix} a & b \\ b & a \end{bmatrix} : a,b \in \mathbb{R} \right\}$$
 where a and b , be a subset of $GL(2,\mathbb{R})$ (the group of all 2×2

matrices with entries from the real numbers with matrix addition as operation).

a) Show that
$$H$$
 is a subgroup of $GL(2,\mathbb{R})$ using the Two-Step-Subgroup Test. [3]

b) Show that the map
$$\varphi: H \to (\mathbb{R},+)$$
 defined by $\varphi(A) = a$ where $A = \begin{bmatrix} a & b \\ b & a \end{bmatrix}$ is a group homomorphism.

MAT2B40 -8-

c) Find the kernel of arphi . [2]

d) Find
$$\varphi^{\scriptscriptstyle -1}(3)$$
. [2]

Question 6

a) Let φ be a homomorphism from a group G_1 to a group G_2 . Prove that $Ker\varphi=\{e\}$ if and only if φ is one-to-one. [4]

b) Let φ be a homomorphism from a group G_1 to a group G_2 such that $Ker \varphi = \{e,g\}$, and $\varphi(a) = b, \ a \in G_1, \ b \in G_2$. Show that there is another element in G_1 that maps onto b. [2]

MAT2B40 - 10 -

Question 7

Consider the graph below and answer the following questions:

a) Use the Krushkal's algorithm to find a spanning tree of minimum weight. Draw your spanning tree in the space below with vertices as above. [4]

b) What is the weight of the resulting spanning tree?

[1]

MAT2B40 - 11 -

Question 8

Consider the graph below and answer the questions that follow:

a) Apply the Floyd-Marshall Algorithm to find the distance from a to every other vertex in the graph, showing your final answer in the table below. [4]

	а	b	С	d	e
а					
b					
с					
d					
e					

b) What is the shortest distance from a to e? Give the path to follow to obtain this distance. [2]