UNIVERSITY OF JOHANNESBURG
FACULTY OF SCIENCE

$\frac{\text { UNIVERSITEIT }}{\text { JOHANNESBURG }}$

DEPARTMENT OF PURE AND APPLIED MATHEMATICS	
MODULE	MAT1C2E (CALCULUS SECTION)
BIO \& ENVIRO MATHS AND STATS	
CAMPUS	APK
EXAM	NOVEMBER 2015

DATE: 13 NOVEMBER 2015
ASSESSOR:
INTERNAL MODERATOR:
DURATION: 60 MINUTES

SESSION: 08:30-10:30
MR. T. MOHUBEDU
MR. V. VAN APPEL
MARKS: 40

SURNAME AND INITIALS: \qquad
STUDENT NUMBER: \qquad
CONTACT NUMBER: \qquad

Please read the following instructions carefully

1. Answer all questions on the paper in pen.
2. This paper consists of 9 pages including the cover page.
3. Show all calculations.
4. Calculators are allowed.

1 Find the composition $f \circ g$ if $f(x)=x^{2}+1$ and $g(x)=1-x$.

3 Find the equation of the straight line that is passing through the points $(1,-1)$ and $(-5,4)$.

4 The temperature of a room (T) is a function of how far the window is open (W, in cm^{2}) according to $\mathrm{T}(\mathrm{W})=30-2.5 \mathrm{~W}$. How long you sleep (S, measured in hours)
is a function of the temperature according to $S(T)=10-0.2 T$
4.1 What is the maximum temperature of the room?
4.2 Find the formula of how long you sleep as a function of how far the window is open.
4.3 How long would you sleep if the window was $8 \mathrm{~cm}^{2}$ open?
5. Suppose a population $V(t)$ of viruses (in millions) in an infected person is dying according to $V(t)=20.1 e^{-0.5 t}$ where time t is measured in hours.
5.1 Calculate the time at which the number of viruses will reach 5.0 million.
5.2 Find the equation of the line $\ln (V(t))$ after transforming the variables to create a semilog plot.
5.3 Sketch the graph of $\ln (V(t))$ as a function of t for $0 \leq t \leq 6$.

6 A population follows the discrete - time dynamical system $b_{t+1}=r b_{t}$ with $r=1.5$ and $b_{0}=2.0 \times 10^{3}$.
6.1 Find the solution of the system.
6.2 When will the population reach 1.0×10^{4} ?
[2]
$7 \quad$ A population has a doubling time of 4.5 years and an initial size of 5×10^{6}.
7.1 What is the population in 9 years?
7.2 Find the equation for population size $P(t)$ as a function of time.

8 The size (in cm) of an organism at time t (in hours) is given by $S(t)=0.1 e^{t}$.
8.1 Find the average rate of change in size during the second hour.
8.2 Hence find the equation of the secant line connecting the base point $t_{0}=1.0$ and $t_{0}+\Delta t$ for $\Delta t=1.0$.
8.3 Find the equation of time as a function of the size of the organism.

9 Find the limit $\quad \lim _{t \rightarrow 0} \frac{\cos t}{x-1}$

10 Set up a table to estimate the limit: $\lim _{t \rightarrow 0} \frac{\sin (2 t)}{t}$

10 Given $f(x)=4-x^{2}$
10.1 Find $f^{\prime}(x)$
10.2 Find the critical values of f.
10.3 Give the interval of increase and decrease increase.

Consider the given sinusoidal graph of V.

11.1 Find the average, amplitude, period and the phase.
[2]
11.2 Write the equation of V.

12 Given $h(t)=4+3 \cos (\pi t-1.571)$
12.1 Write h in standard form
12.2 Sketch the graph of h.

	-	-	-			-		-	-	---	-					-	-		-	-	

