University of Johannesburg

FACULTY OF SCIENCE

DEPARTMENT OF PURE AND APPLIED MATHEMATICS

MODULE MAT0AB2

ENGINEERING LINEAR ALGEBRA B

CAMPUS APK

EXAM NOVEMBER 2015

Date $12/11/2015$	Session 12:30 – 14:30
Assessor	Dr W Morton Dr J Mba
Internal Moderator	Dr G Braatvedt
Duration 2 Hours	60 Marks
Surname and initials:	
Student number:	
Tel No.:	

INSTRUCTIONS:

- 1. The paper consists of **12** printed pages, **excluding** the front page.
- 2. Read the questions carefully and answer all questions.
- 3. Write out all calculations (steps) and motivate all answers.
- 4. Questions are to be answered on the question paper in the space provided. Please indicate when the blank side of a page is used.
- 5. No calculators are allowed.

Question 1 [6]

Answer the following multiple choice questions in the **table given below**. Choose only **one** answer for each question.

- (a) Which of the following maps T from \mathbb{R}^2 to \mathbb{R}^2 is a matrix transformation. (1)
 - A) $T(x_1, x_2) = (1 + x_1, x_2)$
 - B) $T(x_1, x_2) = (x_1 + x_2, x_2)$
 - C) $T(x_1, x_2) = (x_1^2, x_2)$
 - D) $T(x_1, x_2) = (\sin x_1, x_2)$
 - E) None of the above.
- (b) Given two similar matrices A and B. Which of the following statements is **FALSE**? (1)
 - A) If A is invertible, then A^{-1} is similar to B.
 - B) A and B have the same determinant.
 - C) A and B have the same eigenvalues.
 - D) A and B have the same trace.
 - E) None of the above.
- (c) If W is a subspace of an inner product space V. Which of the following statements is **FALSE**?

(1)

- A) W^{\perp} is a subspace of V
- B) $W \cap W^{\perp} = \{0\}$
- $\mathrm{C)} \ \mathrm{dim} W = \mathrm{dim} W^{\perp}$
- D) $(W^{\perp})^{\perp} = W$
- E) None of the above.
- (d) Select a matrix A such that the orthogonal projection of a vector \bar{b} on W, the column space of A, is given by (1)

$$\operatorname{proj}_W \overline{b} = A(A^T A)^{-1} A^T \overline{b}.$$

A)
$$A = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & -1 \end{bmatrix}$$
.

B)
$$A = \begin{bmatrix} 1 & 2 & 1 \\ 2 & 1 & 3 \end{bmatrix}$$
.

$$C) A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \\ 1 & 1 \end{bmatrix}.$$

D)
$$A = \begin{bmatrix} 1 & -1 \\ -1 & 1 \\ 1 & -1 \end{bmatrix}$$
.

E) None of the above.

(1)

(1)

- (e) Which of the following matrices is **not** orthogonally diagonalizable?
 - $A) \begin{bmatrix}
 0 & 0 & 1 \\
 0 & 0 & 0 \\
 1 & 0 & 0
 \end{bmatrix}$
 - $B) \begin{bmatrix}
 1 & 1 & 0 \\
 1 & 1 & 0 \\
 0 & 0 & 2
 \end{bmatrix}$
 - $C) \begin{bmatrix} 1 & 2 & 3 \\ 2 & 2 & 2 \\ 3 & 2 & 3 \end{bmatrix}$
 - D) $\begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix}$
 - E) None of the above.
- (f) Which of the following statements is **TRUE**?
 - A) If A is invertible, then A is orthogonal.
 - B) If A is orthogonal, then A is invertible.
 - C) If A is orthogonal, then det(A) = 1.
 - D) If A is orthogonal, then 0 is an eigenvalue of A.
 - E) None of the above.

Q1(a)	A	В	С	D	E
Q1(b)	A	В	С	D	E
Q1(c)	A	В	С	D	E
Q1(d)	A	В	С	D	E
Q1(e)	A	В	С	D	E
Q1(f)	A	В	С	D	E

[4]

Question 2 Let W be the plane in \mathbb{R}^3 (with the Euclidean inner product) with equation

$$2x - y - 4z = 0.$$

(a) Find a basis for
$$W$$
.

(2)

(b) Find a basis for W^{\perp} .

(2)

Question 3 [6]

Let B be a 3×3 matrix with -1 as its only eigenvalue.

- (a) det(-I-B)=_____(1)
- (b) Is B invertible? Motivate. (1)

(c) What are the possible dimensions of the eigenspace corresponding to $\lambda = -1$? **Explain.**(2)

(d) What condition must be satisfied for B to be diagonalizable? **Motivate.** (1)

(e) What are the eigenvalues of B^4 . (1)

[8]

Question 4 Consider the bases $B = \{1 + 2x, 3 - x\}$ and $B' = \{1 - x, 1 + x\}$ for P_1 , and let $\overline{p} = 5 - 4x$. (a) Find the coordinate vector $[\overline{p}]_B$.

(2)

(b) Find the transition matrix from B to B'.

(2)

(c) Find $[\overline{p}]_{B'}$ using the transition matrix found in (b).

(1)

Recall that $B = \{1 + 2x, 3 - x\}.$

- (d) Let the vector space P_1 have the inner product $\langle \overline{p}, \overline{q} \rangle = 2a_0b_0 + 3a_1b_1$ where $\overline{p} = a_0 + a_1x$ and $\overline{q} = b_0 + b_1x$.
 - Show that B is an orthogonal basis for P_1 , but not orthonormal. Transform B into an orthonormal basis for P_1 . (3)

(a) Verify that A has a QR-decomposition. (1)

(6)

Recall that
$$A = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 2 \\ 1 & 0 & 1 \\ 1 & 1 & -1 \end{bmatrix}$$
.

(b) Find the QR-decomposition of the matrix A.

[5]

Let
$$A = \begin{bmatrix} 1 & 1 \\ 2 & 0 \\ 1 & 1 \end{bmatrix}$$
 and $\bar{b} = \begin{bmatrix} 2 \\ -4 \\ 0 \end{bmatrix}$.

(a) Find the least squares solution of the linear equation $A\overline{x} = \overline{b}$.

(3)

- (b) Find the least squares error vector resulting from the least squares solution \overline{x} .
- (2)

[4]

Question 7 Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be the matrix transformation defined by

$$T(x_1, x_2) = (x_1 + x_2, -x_1 + 2x_2).$$

(a) Show that T is one-to-one.

(1)

(b) Find the standard matrix $[T^{-1}]$ of the inverse of T.

(2)

(c) Determine the formula $T^{-1}(\omega_1, \omega_2)$ for the inverse of T.

(1)

Question 8

[2]

Verify that $\begin{bmatrix} \frac{3}{5} & -\frac{4}{5} \\ \frac{4}{5} & \frac{3}{5} \end{bmatrix}$ is an orthogonal matrix and find its inverse.

[9]

Question 9 Consider the quadratic form $Q = 3x^2 - 4xy$, expressed in matrix notation as

$$=3x^2-4xy$$
, expressed in matrix notation as

$$\overline{x}^T A \overline{x} = \begin{bmatrix} x & y \end{bmatrix} \begin{bmatrix} 3 & -2 \\ -2 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}.$$

(a) Orthogonally diagonalize
$$A = \begin{bmatrix} 3 & -2 \\ -2 & 0 \end{bmatrix}$$
. (6)

(b) Classify the quadratic form Q as positive definite, negative definite or indefinite. **Motivate**.

(1)

Recall that $Q = 3x^2 - 4xy$ or in matrix form $\begin{bmatrix} x & y \end{bmatrix} \begin{bmatrix} 3 & -2 \\ -2 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$.

- (c) Find an orthogonal change of variable that eliminates the cross product terms in Q and express Q in terms of the new variables. (1)
- (d) Identify the conic section represented by the equation $3x^2 4xy 1 = 0$. (1)

Question 10
$$Let A = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 1 & -1 \\ -1 & 0 & 2 \end{bmatrix}.$$
[4]

(a) Find an LU-decomposition of A. (3)

(b) Hence, find A's unique LDU-decomposition.

Question 11

[5]

Find a singular value decomposition of the matrix $A = \begin{bmatrix} 0 & 0 \\ 0 & 3 \\ -2 & 0 \end{bmatrix}$.