University of Johannesburg

$$
\frac{\text { UNIVERSITY }}{\text { JOHANNESBURG }}
$$

Faculty of Science

DEPARTMENT OF PURE AND APPLIED MATHEMATICS
 MODULE MAT0AB2
 ENGINEERING LINEAR ALGEBRA B
 CAMPUS APK
 EXAM NOVEMBER 2015

Date 12/11/2015
AsSessor
Dr W Morton Dr J Mba
Internal Moderator
Dr G Braatvedt
Duration 2 Hours 60 Marks

SURNAME AND initials: \qquad

Student number: \qquad

Tel No.: \qquad

INSTRUCTIONS:

1. The paper consists of $\mathbf{1 2}$ printed pages, excluding the front page.
2. Read the questions carefully and answer all questions.
3. Write out all calculations (steps) and motivate all answers.
4. Questions are to be answered on the question paper in the space provided. Please indicate when the blank side of a page is used.
5. No calculators are allowed.

Question 1
Answer the following multiple choice questions in the table given below. Choose only one answer for each question.
(a) Which of the following maps T from \mathbb{R}^{2} to \mathbb{R}^{2} is a matrix transformation.
A) $T\left(x_{1}, x_{2}\right)=\left(1+x_{1}, x_{2}\right)$
B) $T\left(x_{1}, x_{2}\right)=\left(x_{1}+x_{2}, x_{2}\right)$
C) $T\left(x_{1}, x_{2}\right)=\left(x_{1}^{2}, x_{2}\right)$
D) $T\left(x_{1}, x_{2}\right)=\left(\sin x_{1}, x_{2}\right)$
E) None of the above.
(b) Given two similar matrices A and B. Which of the following statements is FALSE?
A) If A is invertible, then A^{-1} is similar to B.
B) A and B have the same determinant.
C) A and B have the same eigenvalues.
D) A and B have the same trace.
E) None of the above.
(c) If W is a subspace of an inner product space V. Which of the following statements is FALSE?
A) W^{\perp} is a subspace of V
B) $W \cap W^{\perp}=\{0\}$
C) $\operatorname{dim} W=\operatorname{dim} W^{\perp}$
D) $\left(W^{\perp}\right)^{\perp}=W$
E) None of the above.
(d) Select a matrix A such that the orthogonal projection of a vector \bar{b} on W, the column space of A, is given by

$$
\begin{equation*}
\operatorname{proj}_{W} \bar{b}=A\left(A^{T} A\right)^{-1} A^{T} \bar{b} \tag{1}
\end{equation*}
$$

A) $A=\left[\begin{array}{ccc}1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & -1\end{array}\right]$.
B) $A=\left[\begin{array}{lll}1 & 2 & 1 \\ 2 & 1 & 3\end{array}\right]$.
C) $A=\left[\begin{array}{ll}1 & 1 \\ 0 & 1 \\ 1 & 1\end{array}\right]$.
D) $A=\left[\begin{array}{cc}1 & -1 \\ -1 & 1 \\ 1 & -1\end{array}\right]$.
E) None of the above.
(e) Which of the following matrices is not orthogonally diagonalizable?
A) $\left[\begin{array}{lll}0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0\end{array}\right]$
B) $\left[\begin{array}{lll}1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 2\end{array}\right]$
C) $\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 2 & 2 \\ 3 & 2 & 3\end{array}\right]$
D) $\left[\begin{array}{lll}1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1\end{array}\right]$
E) None of the above.
(f) Which of the following statements is TRUE?
A) If A is invertible, then A is orthogonal.
B) If A is orthogonal, then A is invertible.
C) If A is orthogonal, then $\operatorname{det}(A)=1$.
D) If A is orthogonal, then 0 is an eigenvalue of A.
E) None of the above.

Q1(a)	A	B	C	D	E
Q1(b)	A	B	C	D	E
Q1(c)	A	B	C	D	E
Q1(d)	A	B	C	D	E
Q1(e)	A	B	C	D	E
Q1(f)	A	B	C	D	E

Question 2
Let W be the plane in \mathbb{R}^{3} (with the Euclidean inner product) with equation

$$
\begin{equation*}
2 x-y-4 z=0 \tag{2}
\end{equation*}
$$

(a) Find a basis for W.
(b) Find a basis for W^{\perp}.

Question 3
Let B be a 3×3 matrix with -1 as its only eigenvalue.
(a) $\operatorname{det}(-I-B)=$
(b) Is B invertible? Motivate.
(c) What are the possible dimensions of the eigenspace corresponding to $\lambda=-1$? Explain.(2)
(d) What condition must be satisfied for B to be diagonalizable? Motivate.
(e) What are the eigenvalues of B^{4}.

Question 4
Consider the bases $B=\{1+2 x, 3-x\}$ and $B^{\prime}=\{1-x, 1+x\}$ for P_{1}, and let $\bar{p}=5-4 x$.
(a) Find the coordinate vector $[\bar{p}]_{B}$.
(b) Find the transition matrix from B to B^{\prime}.
(c) Find $[\bar{p}]_{B^{\prime}}$ using the transition matrix found in (b).

Recall that $B=\{1+2 x, 3-x\}$.
(d) Let the vector space P_{1} have the inner product $\langle\bar{p}, \bar{q}\rangle=2 a_{0} b_{0}+3 a_{1} b_{1}$ where $\bar{p}=a_{0}+a_{1} x$ and $\bar{q}=b_{0}+b_{1} x$.
Show that B is an orthogonal basis for P_{1}, but not orthonormal. Transform B into an orthonormal basis for P_{1}.

Question 5
Let $A=\left[\begin{array}{ccc}1 & 1 & 0 \\ 1 & 0 & 2 \\ 1 & 0 & 1 \\ 1 & 1 & -1\end{array}\right]$
(a) Verify that A has a $Q R$-decomposition.

$$
\text { Recall that } A=\left[\begin{array}{ccc}
1 & 1 & 0 \\
1 & 0 & 2 \\
1 & 0 & 1 \\
1 & 1 & -1
\end{array}\right]
$$

(b) Find the $Q R$-decomposition of the matrix A.

Question 6
Let $A=\left[\begin{array}{ll}1 & 1 \\ 2 & 0 \\ 1 & 1\end{array}\right]$ and $\bar{b}=\left[\begin{array}{c}2 \\ -4 \\ 0\end{array}\right]$.
(a) Find the least squares solution of the linear equation $A \bar{x}=\bar{b}$.
(b) Find the least squares error vector resulting from the least squares solution \bar{x}.

Question 7
$\overline{\text { Let } T: \mathbb{R}^{2}} \rightarrow \mathbb{R}^{2}$ be the matrix transformation defined by

$$
\begin{equation*}
T\left(x_{1}, x_{2}\right)=\left(x_{1}+x_{2},-x_{1}+2 x_{2}\right) . \tag{1}
\end{equation*}
$$

(a) Show that T is one-to-one.
(b) Find the standard matrix $\left[T^{-1}\right]$ of the inverse of T.
(c) Determine the formula $T^{-1}\left(\omega_{1}, \omega_{2}\right)$ for the inverse of T.

Question 8
Verify that $\left[\begin{array}{cc}\frac{3}{5} & -\frac{4}{5} \\ \frac{4}{5} & \frac{3}{5}\end{array}\right]$ is an orthogonal matrix and find its inverse.

Question 9

Consider the quadratic form $Q=3 x^{2}-4 x y$, expressed in matrix notation as

$$
\bar{x}^{T} A \bar{x}=\left[\begin{array}{ll}
x & y
\end{array}\right]\left[\begin{array}{cc}
3 & -2 \\
-2 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right] .
$$

(a) Orthogonally diagonalize $A=\left[\begin{array}{cc}3 & -2 \\ -2 & 0\end{array}\right]$.
(b) Classify the quadratic form Q as positive definite, negative definite or indefinite. Motivate.

Recall that $Q=3 x^{2}-4 x y$ or in matrix form $\left[\begin{array}{ll}x & y\end{array}\right]\left[\begin{array}{cc}3 & -2 \\ -2 & 0\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]$.
(c) Find an orthogonal change of variable that eliminates the cross product terms in Q and express Q in terms of the new variables.
(d) Identify the conic section represented by the equation $3 x^{2}-4 x y-1=0$.

Question 10
Let $A=\left[\begin{array}{ccc}1 & 2 & 1 \\ 0 & 1 & -1 \\ -1 & 0 & 2\end{array}\right]$.
(a) Find an $L U$-decomposition of A.
(b) Hence, find A 's unique $L D U$-decomposition.

Find a singular value decomposition of the matrix $A=\left[\begin{array}{cc}0 & 0 \\ 0 & 3 \\ -2 & 0\end{array}\right]$.

