

PROGRAM

: NATIONAL DIPLOMA

ENGINEERING: CIVIL

SUBJECT

: HYDROLOGY 3B

CODE

: CEW3B21

DATE

: SUMMER SSA EXAMINATION 2015

10 DECEMBER 2015

DURATION

: (SESSION 1) 08:00 - 11:00

WEIGHT

: 40:60

TOTAL MARKS : 75

EXAMINER

: MR LF SHIRLEY

MODERATOR : DR AM CASSA

2296

NUMBER OF PAGES : 2 PAGES

INSTRUCTIONS

: THIS IS AN OPEN BOOK EXAMINATION.

: Flood Hydrology by Haarhoff and Cassa only may be brought

into the examination venue.

: THE QUESTION PAPER MUST BE HANDED IN.

REQUIREMENTS

: ONE SHEET SIZE A4 GRAPH PAPER.

INSTRUCTIONS TO CANDIDATES:

ANSWER ALL THE QUESTIONS.

QUESTION 1

Calculate the peak discharge for a rainstorm of return period 5 years from a catchment of area $8,50 \, \mathrm{km^2}$ in basin 1 (Straun) with length of longest water course $3,250 \, \mathrm{km}$ and $1085 \, \mathrm{slope}$ of $0,050 \, \mathrm{m/m}$ by means of the rational method. Take C=0,250.

[15]

QUESTION 2

Calculate the peak discharge for a rainstorm of return period 10 years from a catchment of area 10 000km² in basin 5 (Leydsdorp) with length of longest water course 100km and 1085 slope of 0,001250m/m by means of the standard design flood method.

[25]

QUESTION 3

Given the following 10mm 1 h unit hydrograph and net rainfall profile:

Unit hydrograph data:

o J an o graph									
Time (h) 0	1	2	3	4	5	6	7	8	9
Runoff (m^3/s) 0	10	35	60	50	30	15	0	0	0
Net rainfall profile	:								
Time (h)	0		1		2		3		
Net rainfall (mm)		5		0		15			

- 3.1 Plot the surface runoff hydrograph on the graph paper provided to suitable scales;
- (10)

3.2 Determine the volume of water that runs off.

(5)

[15]

QUESTION 4

Use the Franco-Rodier approach to estimate the (a) RMF and (b) flood peak corresponding to a return period of 100 years for a catchment in region 4 having a effective drainage area of 5000km².

[20]

[Total = 75]